Analytical stability analysis of periodic systems by Poincaré mappings with application to rotorcraft dynamics.
We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as , to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.
* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.In this paper the classical Kirchhoff case of motion of a rigid body in an infinite ideal fluid is considered. Then for the corresponding Hamiltonian system on the zero integral level, the KAM theory conditions are checked. In contrast to the known similar results, there exists a curve in the bifurcation diagram along which the Kolmogorov’s condition vanishes for certain values of the parameters.
We consider the motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain. For such a system the Cauchy problem is well-posed locally in time if the initial velocity of the fluid is in the Hölder space . In this paper we prove that the smoothness of the motion of the rigid body may be only limited by the smoothness of the boundaries (of the body and of the domain). In particular for analytic boundaries the motion of the rigid body is analytic...