Infinite locally soluble k -Engel groups

Lucia Serena Spiezia

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 3, page 177-183
  • ISSN: 1120-6330

Abstract

top
In this paper we deal with the class E k * of groups G for which whenever we choose two infinite subsets X , Y there exist two elements x X , y Y such that x , y , , y k = 1 . We prove that an infinite finitely generated soluble group in the class E k * is in the class E k of k -Engel groups. Furthermore, with k = 2 , we show that if G E 2 * is infinite locally soluble or hyperabelian group then G E 2 .

How to cite

top

Spiezia, Lucia Serena. "Infinite locally soluble \( k \)-Engel groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.3 (1992): 177-183. <http://eudml.org/doc/244332>.

@article{Spiezia1992,
abstract = {In this paper we deal with the class \( \mathcal\{E\}\_\{k\}^\{*\} \) of groups \( G \) for which whenever we choose two infinite subsets \( X \), \( Y \) there exist two elements \( x \in X \), \( y \in Y \) such that \( [x, \underbrace\{y,\ldots,y\}\_\{k\}] = 1 \). We prove that an infinite finitely generated soluble group in the class \( \mathcal\{E\}\_\{k\}^\{*\} \) is in the class \( \mathcal\{E\}\_\{k\} \) of \( k \)-Engel groups. Furthermore, with \( k = 2 \), we show that if \( G \in \mathcal\{E\}\_\{2\}^\{*\} \) is infinite locally soluble or hyperabelian group then \( G \in \mathcal\{E\}\_\{2\} \).},
author = {Spiezia, Lucia Serena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Groups; Engel; Varieties; infinite subsets; finitely generated soluble group; -Engel groups; infinite locally soluble; hyperabelian group},
language = {eng},
month = {9},
number = {3},
pages = {177-183},
publisher = {Accademia Nazionale dei Lincei},
title = {Infinite locally soluble \( k \)-Engel groups},
url = {http://eudml.org/doc/244332},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Spiezia, Lucia Serena
TI - Infinite locally soluble \( k \)-Engel groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/9//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 3
SP - 177
EP - 183
AB - In this paper we deal with the class \( \mathcal{E}_{k}^{*} \) of groups \( G \) for which whenever we choose two infinite subsets \( X \), \( Y \) there exist two elements \( x \in X \), \( y \in Y \) such that \( [x, \underbrace{y,\ldots,y}_{k}] = 1 \). We prove that an infinite finitely generated soluble group in the class \( \mathcal{E}_{k}^{*} \) is in the class \( \mathcal{E}_{k} \) of \( k \)-Engel groups. Furthermore, with \( k = 2 \), we show that if \( G \in \mathcal{E}_{2}^{*} \) is infinite locally soluble or hyperabelian group then \( G \in \mathcal{E}_{2} \).
LA - eng
KW - Groups; Engel; Varieties; infinite subsets; finitely generated soluble group; -Engel groups; infinite locally soluble; hyperabelian group
UR - http://eudml.org/doc/244332
ER -

References

top
  1. GRUENBERG, K. W., The upper central series in soluble groups. Illinois J. of Math., 5, 1961, 436-466. Zbl0244.20028MR136657
  2. LONGOBARDI, P. - MAJ, M. - RHEMTULLA, A. H., Infinite groups in a given variety and Ramsey's theorem. Communications in Algebra, to appear. Zbl0751.20020
  3. KIM, P. S. - RHEMTULLA, A. H. - SMITH, H., A characterization of infinite metabelian groups. Houston J. of Math., to appear. Zbl0744.20033
  4. ROBINSON, D. J. S., Finiteness Conditions and Generalized Soluble Groups. Part I and Part II. Springer Verlag, Berlin-Heidelberg-New York1972. Zbl0243.20033
  5. ZAICEV, D. I., On solvable subgroups of locally solvable groups. Dokl. Akad. Nauk SSSR, 214, 1974, 1250-1253 (translation in Soviet Math. Dokl., 15, 1974, 342-345). Zbl0322.20017MR338181

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.