A min-max theorem for multiple integrals of the Calculus of Variations and applications
- Volume: 6, Issue: 1, page 29-35
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topArcoya, David, and Boccardo, Lucio. "A min-max theorem for multiple integrals of the Calculus of Variations and applications." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 29-35. <http://eudml.org/doc/244334>.
@article{Arcoya1995,
abstract = {In this paper we deal with the existence of critical points for functionals defined on the Sobolev space \( W\_\{0\}^\{1,2\} (\Omega) \) by \( J(v) = \int\_\{\Omega\} \mathfrak\{I\} (x,v,Dv) \, dx \), \( v \in W\_\{0\}^\{1,2\} (\Omega) \), where \( \Omega \) is a bounded, open subset of \( \mathbb\{R\}^\{N\} \). Since the differentiability can fail even for very simple examples of functionals defined through multiple integrals of Calculus of Variations, we give a suitable version of the Ambrosetti-Rabinowitz Mountain Pass Theorem, which enables us to the study of critical points for functionals which are not differentiable in all directions. Then we present some applications of this theorem to the study of the existence and multiplicity of nonnegative critical points for multiple integrals of the Calculus of Variations.},
author = {Arcoya, David, Boccardo, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Critical points; Multiple integrals of Calculus of Variations; Quasilinear equations; Ambrosetti-Rabinowitz mountain pass theorem; existence; critical points; functionals; Sobolev space; multiple integrals},
language = {eng},
month = {3},
number = {1},
pages = {29-35},
publisher = {Accademia Nazionale dei Lincei},
title = {A min-max theorem for multiple integrals of the Calculus of Variations and applications},
url = {http://eudml.org/doc/244334},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Arcoya, David
AU - Boccardo, Lucio
TI - A min-max theorem for multiple integrals of the Calculus of Variations and applications
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 29
EP - 35
AB - In this paper we deal with the existence of critical points for functionals defined on the Sobolev space \( W_{0}^{1,2} (\Omega) \) by \( J(v) = \int_{\Omega} \mathfrak{I} (x,v,Dv) \, dx \), \( v \in W_{0}^{1,2} (\Omega) \), where \( \Omega \) is a bounded, open subset of \( \mathbb{R}^{N} \). Since the differentiability can fail even for very simple examples of functionals defined through multiple integrals of Calculus of Variations, we give a suitable version of the Ambrosetti-Rabinowitz Mountain Pass Theorem, which enables us to the study of critical points for functionals which are not differentiable in all directions. Then we present some applications of this theorem to the study of the existence and multiplicity of nonnegative critical points for multiple integrals of the Calculus of Variations.
LA - eng
KW - Critical points; Multiple integrals of Calculus of Variations; Quasilinear equations; Ambrosetti-Rabinowitz mountain pass theorem; existence; critical points; functionals; Sobolev space; multiple integrals
UR - http://eudml.org/doc/244334
ER -
References
top- AMBROSETTI, A., Critical points and nonlinear variational problems. Supplement au Bulletin de la Société Mathématique de France, Mémoire n. 49, 1992. Zbl0766.49006MR1164129
- AMBROSETTI, A. - RABINOWITZ, P. H., Dual variational methods in critical point theory and applications. J. Funct. Anal., 14, 1973, 349-381. Zbl0273.49063MR370183
- ARCOYA, D. - BOCCARDO, L., Nontrivial solutions to some nonlinear equations via Minimization. International Conference on Nonlinear P.D.E., Erice (Italy), May 1992, to appear. Zbl0849.49004MR1451146
- ARCOYA, D. - BOCCARDO, L., Critical points for multiple integrals of Calculus of Variations. To appear. Zbl0884.58023MR1412429DOI10.1007/BF00379536
- AUBIN, J. P. - EKELAND, I., Applied Nonlinear Analysis. Wiley, Interscience, New York1984. Zbl0641.47066MR749753
- BOCCARDO, L. - GALLOUET, T. - MURAT, F., A unified presentation of two existence results for problems with natural growth. Pitman Research Notes in Mathematics, n. 296, 1993, 127-137. Zbl0806.35033MR1248641
- BRÉZIS, H. - NIRENBERG, L., Remarks on finding critical points. Comm. Pure Appl. Math., XLIV, 1991, 939-963. Zbl0751.58006MR1127041DOI10.1002/cpa.3160440808
- EKELAND, I., Nonconvex minimization problems. Bull. Amer. Math. Soc. (NS), 1, 1979, 443-474. Zbl0441.49011MR526967DOI10.1090/S0273-0979-1979-14595-6
- DACOROGNA, B., Direct Methods in the Calculus of Variations. Springer-Verlag, 1989. Zbl1140.49001MR990890
- DE FIGUEIREDO, D. G., The Ekeland Variational Principle with Applications and Detours. Springer-Verlag, 1989. MR1019559
- LADYZENSKAYA, O. A. - URALCEVA, N. N., Equations aux dérivées partielles de type elliptique. Dunod, Paris1968. Zbl0164.13001
- MAWHIN, I. - WILLEM, M., Critical Point Theory and Hamiltonian Systems. Springer-Verlag, 1989. Zbl0676.58017MR982267
- MORREY, C. B., Multiple Integrals in the Calculus of Variations. Springer-Verlag, 1966. Zbl1213.49002MR202511
- RABINOWTTZ, P. H., Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series Math., 65, Amer. Math. Soc., Providence1986. Zbl0609.58002MR845785
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.