On absolutely-nilpotent of class groups
Patrizia Longobardi; Trueman MacHenry; Mercede Maj; James Wiegold
- Volume: 6, Issue: 4, page 201-209
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLongobardi, Patrizia, et al. "On absolutely-nilpotent of class \( k \) groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.4 (1995): 201-209. <http://eudml.org/doc/244336>.
@article{Longobardi1995,
abstract = {A group \( G \) in a variety \( \mathfrak\{V\} \) is said to be absolutely-\( \mathfrak\{V\} \), and we write \( G \in A \mathfrak\{V\} \), if central extensions by \( G \) are again in \( \mathfrak\{V\} \). Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class \( A \mathfrak\{N\}\_\{k\} \) of absolutely-nilpotent of class \( k \) groups. We prove some closure properties of the class \( A \mathfrak\{N\}\_\{k\} \) and we show that every nilpotent of class \( k \) group can be embedded in an \( A \mathfrak\{N\}\_\{k\} \)-gvoup. We describe all metacyclic \( A \mathfrak\{N\}\_\{k\} \)-groups and we characterize \( 2 \)-generator and infinite \( 3 \)-generator \( A \mathfrak\{N\}\_\{2\} \)-groups. Finally we study extensions \( 1 \to N \to H \to G \to 1 \), with \( N \le \zeta\_\{n\} (H) \), the \( n \)-centre of $ H $, with\( n > 1 \).},
author = {Longobardi, Patrizia, MacHenry, Trueman, Maj, Mercede, Wiegold, James},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Variety; Central extension; Nilpotent group; varieties of groups; absolutely-nilpotent groups; central extensions; free presentations; lower central series; metacyclic -groups; infinite 3-generator -groups; nilpotent extensions},
language = {eng},
month = {12},
number = {4},
pages = {201-209},
publisher = {Accademia Nazionale dei Lincei},
title = {On absolutely-nilpotent of class \( k \) groups},
url = {http://eudml.org/doc/244336},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Longobardi, Patrizia
AU - MacHenry, Trueman
AU - Maj, Mercede
AU - Wiegold, James
TI - On absolutely-nilpotent of class \( k \) groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/12//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 4
SP - 201
EP - 209
AB - A group \( G \) in a variety \( \mathfrak{V} \) is said to be absolutely-\( \mathfrak{V} \), and we write \( G \in A \mathfrak{V} \), if central extensions by \( G \) are again in \( \mathfrak{V} \). Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class \( A \mathfrak{N}_{k} \) of absolutely-nilpotent of class \( k \) groups. We prove some closure properties of the class \( A \mathfrak{N}_{k} \) and we show that every nilpotent of class \( k \) group can be embedded in an \( A \mathfrak{N}_{k} \)-gvoup. We describe all metacyclic \( A \mathfrak{N}_{k} \)-groups and we characterize \( 2 \)-generator and infinite \( 3 \)-generator \( A \mathfrak{N}_{2} \)-groups. Finally we study extensions \( 1 \to N \to H \to G \to 1 \), with \( N \le \zeta_{n} (H) \), the \( n \)-centre of $ H $, with\( n > 1 \).
LA - eng
KW - Variety; Central extension; Nilpotent group; varieties of groups; absolutely-nilpotent groups; central extensions; free presentations; lower central series; metacyclic -groups; infinite 3-generator -groups; nilpotent extensions
UR - http://eudml.org/doc/244336
ER -
References
top- BEYL, F. R., Ahelian groups with a vanishing homology group. J. Pure Appl. Algebra, 7, 1976, 175-193. Zbl0322.18008MR399307
- BEYL, F. R., Isoclinisms of Group Extensions and the Schur Multiplicator. Groups-St. Andrews 1981, London Math. Soc.Lecture Note Ser., vol. 71, Cambridge 1982, 169-185. Zbl0509.20037MR2352811
- BEYL, F. R., Commutator properties of extension groups. C.R. Math. Rep. Acad. Sci. Canada, 2, 1986, 27-30. Zbl0428.20021MR564488
- BEYL, F. R. - TAPPE, J., Group Extensions, Representations, and the Schur Multiplicator. Lecture Notes in Mathematics, vol. 958, Springer-Verlag, 1982. Zbl0544.20001MR681287
- EVENS, L., Terminal -groups. Illinois J. Math., 12, 1968, 682-699. Zbl0233.20009MR241535
- NEUMANN, B. H., On amalgams of periodic groups. Proc. Roy. Soc. London, Ser. A 255, 1960, 477-489. Zbl0092.02001MR113927
- PASSI, I. B. S. - VERMANI, L. R., The inflation homomorphism. J. London Math. Soc., II Ser., 6, 1972, 129-136. Zbl0253.20075MR311798
- STAMMBACH, U., Homology in Group Theory. Lecture Notes in Mathematics, vol. 359, Springer-Verlag, 1973. Zbl0272.20049MR382477
- VARADARAJAN, K., Groups for which Moore spaces exist. Ann. of Math., 84 (2), 1966, 368-371. Zbl0149.20103MR202143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.