On absolutely-nilpotent of class k groups

Patrizia Longobardi; Trueman MacHenry; Mercede Maj; James Wiegold

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1995)

  • Volume: 6, Issue: 4, page 201-209
  • ISSN: 1120-6330

Abstract

top
A group G in a variety V is said to be absolutely- V , and we write G A V , if central extensions by G are again in V . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class A N k of absolutely-nilpotent of class k groups. We prove some closure properties of the class A N k and we show that every nilpotent of class k group can be embedded in an A N k -gvoup. We describe all metacyclic A N k -groups and we characterize 2 -generator and infinite 3 -generator A N 2 -groups. Finally we study extensions 1 N H G 1 , with N ζ n H , the n -centre of H , with n > 1 .

How to cite

top

Longobardi, Patrizia, et al. "On absolutely-nilpotent of class \( k \) groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.4 (1995): 201-209. <http://eudml.org/doc/244336>.

@article{Longobardi1995,
abstract = {A group \( G \) in a variety \( \mathfrak\{V\} \) is said to be absolutely-\( \mathfrak\{V\} \), and we write \( G \in A \mathfrak\{V\} \), if central extensions by \( G \) are again in \( \mathfrak\{V\} \). Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class \( A \mathfrak\{N\}\_\{k\} \) of absolutely-nilpotent of class \( k \) groups. We prove some closure properties of the class \( A \mathfrak\{N\}\_\{k\} \) and we show that every nilpotent of class \( k \) group can be embedded in an \( A \mathfrak\{N\}\_\{k\} \)-gvoup. We describe all metacyclic \( A \mathfrak\{N\}\_\{k\} \)-groups and we characterize \( 2 \)-generator and infinite \( 3 \)-generator \( A \mathfrak\{N\}\_\{2\} \)-groups. Finally we study extensions \( 1 \to N \to H \to G \to 1 \), with \( N \le \zeta\_\{n\} (H) \), the \( n \)-centre of $ H $, with\( n > 1 \).},
author = {Longobardi, Patrizia, MacHenry, Trueman, Maj, Mercede, Wiegold, James},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Variety; Central extension; Nilpotent group; varieties of groups; absolutely-nilpotent groups; central extensions; free presentations; lower central series; metacyclic -groups; infinite 3-generator -groups; nilpotent extensions},
language = {eng},
month = {12},
number = {4},
pages = {201-209},
publisher = {Accademia Nazionale dei Lincei},
title = {On absolutely-nilpotent of class \( k \) groups},
url = {http://eudml.org/doc/244336},
volume = {6},
year = {1995},
}

TY - JOUR
AU - Longobardi, Patrizia
AU - MacHenry, Trueman
AU - Maj, Mercede
AU - Wiegold, James
TI - On absolutely-nilpotent of class \( k \) groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/12//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 4
SP - 201
EP - 209
AB - A group \( G \) in a variety \( \mathfrak{V} \) is said to be absolutely-\( \mathfrak{V} \), and we write \( G \in A \mathfrak{V} \), if central extensions by \( G \) are again in \( \mathfrak{V} \). Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class \( A \mathfrak{N}_{k} \) of absolutely-nilpotent of class \( k \) groups. We prove some closure properties of the class \( A \mathfrak{N}_{k} \) and we show that every nilpotent of class \( k \) group can be embedded in an \( A \mathfrak{N}_{k} \)-gvoup. We describe all metacyclic \( A \mathfrak{N}_{k} \)-groups and we characterize \( 2 \)-generator and infinite \( 3 \)-generator \( A \mathfrak{N}_{2} \)-groups. Finally we study extensions \( 1 \to N \to H \to G \to 1 \), with \( N \le \zeta_{n} (H) \), the \( n \)-centre of $ H $, with\( n > 1 \).
LA - eng
KW - Variety; Central extension; Nilpotent group; varieties of groups; absolutely-nilpotent groups; central extensions; free presentations; lower central series; metacyclic -groups; infinite 3-generator -groups; nilpotent extensions
UR - http://eudml.org/doc/244336
ER -

References

top
  1. BEYL, F. R., Ahelian groups with a vanishing homology group. J. Pure Appl. Algebra, 7, 1976, 175-193. Zbl0322.18008MR399307
  2. BEYL, F. R., Isoclinisms of Group Extensions and the Schur Multiplicator. Groups-St. Andrews 1981, London Math. Soc.Lecture Note Ser., vol. 71, Cambridge 1982, 169-185. Zbl0509.20037MR2352811
  3. BEYL, F. R., Commutator properties of extension groups. C.R. Math. Rep. Acad. Sci. Canada, 2, 1986, 27-30. Zbl0428.20021MR564488
  4. BEYL, F. R. - TAPPE, J., Group Extensions, Representations, and the Schur Multiplicator. Lecture Notes in Mathematics, vol. 958, Springer-Verlag, 1982. Zbl0544.20001MR681287
  5. EVENS, L., Terminal p -groups. Illinois J. Math., 12, 1968, 682-699. Zbl0233.20009MR241535
  6. NEUMANN, B. H., On amalgams of periodic groups. Proc. Roy. Soc. London, Ser. A 255, 1960, 477-489. Zbl0092.02001MR113927
  7. PASSI, I. B. S. - VERMANI, L. R., The inflation homomorphism. J. London Math. Soc., II Ser., 6, 1972, 129-136. Zbl0253.20075MR311798
  8. STAMMBACH, U., Homology in Group Theory. Lecture Notes in Mathematics, vol. 359, Springer-Verlag, 1973. Zbl0272.20049MR382477
  9. VARADARAJAN, K., Groups for which Moore spaces M π , 1 exist. Ann. of Math., 84 (2), 1966, 368-371. Zbl0149.20103MR202143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.