On the continuity of degenerate n-harmonic functions
Flavia Giannetti; Antonia Passarelli di Napoli
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 3, page 621-642
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topGiannetti, Flavia, and Passarelli di Napoli, Antonia. "On the continuity of degenerate n-harmonic functions." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 621-642. <http://eudml.org/doc/244353>.
@article{Giannetti2012,
abstract = {We study the regularity of finite energy solutions to degenerate
n-harmonic equations. The function
K(x), which measures the degeneracy, is assumed to be
subexponentially integrable, i.e. it verifies the condition
exp(P(K)) ∈ Lloc1. The function P(t) is increasing on
[0,∞[ and satisfies the divergence condition \begin\{equation\}
\int\_1^\infty\frac\{P(t)\}\{t^2\}\,\{\rm d\}t=\infty.
\end\{equation\}},
author = {Giannetti, Flavia, Passarelli di Napoli, Antonia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions},
language = {eng},
month = {11},
number = {3},
pages = {621-642},
publisher = {EDP Sciences},
title = {On the continuity of degenerate n-harmonic functions},
url = {http://eudml.org/doc/244353},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Giannetti, Flavia
AU - Passarelli di Napoli, Antonia
TI - On the continuity of degenerate n-harmonic functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/11//
PB - EDP Sciences
VL - 18
IS - 3
SP - 621
EP - 642
AB - We study the regularity of finite energy solutions to degenerate
n-harmonic equations. The function
K(x), which measures the degeneracy, is assumed to be
subexponentially integrable, i.e. it verifies the condition
exp(P(K)) ∈ Lloc1. The function P(t) is increasing on
[0,∞[ and satisfies the divergence condition \begin{equation}
\int_1^\infty\frac{P(t)}{t^2}\,{\rm d}t=\infty.
\end{equation}
LA - eng
KW - Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions
UR - http://eudml.org/doc/244353
ER -
References
top- E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, in Material Instabilities in Continuum Mechanics, J.M. Ball Ed. (Edinburgh, 1985–1986). Oxford University Press, New York (1988).
- M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity for p-harmonic equations with right hand side in Orlicz-Zygmund classes. J. Differ. Equ.242 (2007) 248–268.
- F. Gehring, Rings and quasiconformal mapping in the space. Trans. Amer. Math. Soc.103 (1962) 353–393.
- F. Giannetti and A. Passarelli di Napoli, Isoperimetric type inequalities for differential forms on manifolds. Indiana Univ. Math. J.54 (2005) 1483–1497.
- F. Giannetti and A. Passarelli di Napoli, On very weak solutions of degenerate equations. NoDEA14 (2007) 739–751.
- F. Giannetti, L. Greco and A. Passarelli di Napoli, The self-improving property of the Jacobian determinant in Orlicz spaces. Indiana Univ. Math. J.59 (2010) 91–114.
- F. Giannetti, L. Greco and A. Passarelli di Napoli, Regularity of solutions of degenerate A-harmonic equations. Nonlinear Anal.73 (2010) 2651–2665.
- T. Iwaniec and J. Onninen, Continuity estimates for n-harmonic equations. Indiana Univ. Math. J.56 (2007) 805–824.
- T. Iwaniec and C. Sbordone, Quasiharmonic fields. Ann. Inst. Henri Poincaré Anal. non Linéaire18 (2001) 519–572.
- T. Iwaniec, L. Migliaccio, G. Moscariello and A. Passarelli di Napoli, A priori estimates for nonlinear elliptic complexes. Advances Difference Equ.8 (2003) 513–546.
- J. Kauhanen, P. Koskela, J. Maly, J. Onninen and X. Zhong, Mappings of finite distortion : sharp Orlicz conditions. Rev. Mat. Iberoamericana19 (2003) 857–872.
- P. Koskela and J. Onninen, Mappings of finite distortion : the sharp modulus of continuity. Trans. Amer. Math. Soc.355 (2003) 1905–1920.
- P. Koskela, J. Manfredi and E. Villamor, Regularity theory and traces of 𝒜-harmonic functions. Trans. Amer. Math. Soc.348 (1996) 755–766.
- M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces. P. Noordhoff LTD, Groningen, The Netherlands (1961).
- J. Lewis, On very weak solutions of certain elliptic systems. Commun. Partial. Differ. Equ.18 (1993) 1515–1537.
- J. Manfredi, Weakly monotone functions. J. Geom. Anal.4 (1994) 393–402.
- G. Moscariello, On the integrability of “finite energy” solutions for p-harmonic equations. NoDEA11 (2004) 393–406.
- M.M. Rao and Z.D. Ren, Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics146. Marcel Dekker, Inc., New York (1991).
- G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Semin. de Math. Supérieures 16, Univ. de Montréal (1966).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.