The steepest descent dynamical system with control. Applications to constrained minimization
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 2, page 243-258
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCabot, Alexandre. "The steepest descent dynamical system with control. Applications to constrained minimization." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2004): 243-258. <http://eudml.org/doc/244608>.
@article{Cabot2004,
abstract = {Let $H$ be a real Hilbert space, $\Phi _1: H\rightarrow \mathbb \{R\}$ a convex function of class $\{\mathcal \{C\}\}^1$ that we wish to minimize under the convex constraint $S$. A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function $\Phi _1+\delta _S$. Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function $\Phi _0: H\rightarrow \mathbb \{R\}$ whose critical points coincide with $S$ and a control parameter $\varepsilon :\mathbb \{R\}_+\rightarrow \mathbb \{R\}_+$ tending to zero, we consider the “Steepest Descent and Control” system\[(SDC) \qquad \dot\{x\}(t)+\nabla \Phi \_0(x(t))+\varepsilon (t)\, \nabla \Phi \_1(x(t))=0,\]where the control $\varepsilon $ satisfies $\int _0^\{+\infty \} \varepsilon (t)\, \{\rm d\}t =+\infty $. This last condition ensures that $\varepsilon $ “slowly” tends to $0$. When $H$ is finite dimensional, we then prove that $d(x(t), \operatorname\{argmin\}_S \Phi _1) \rightarrow 0 \quad (t\rightarrow +\infty ),$ and we give sufficient conditions under which $x(t) \rightarrow \bar\{x\}\in \,\operatorname\{argmin\}_S \Phi _1$. We end the paper by numerical experiments allowing to compare the $(SDC)$ system with the other systems already mentioned.},
author = {Cabot, Alexandre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {dissipative dynamical system; steepest descent method; constrained optimization; convex minimization; asymptotic behaviour; non-linear oscillator},
language = {eng},
number = {2},
pages = {243-258},
publisher = {EDP-Sciences},
title = {The steepest descent dynamical system with control. Applications to constrained minimization},
url = {http://eudml.org/doc/244608},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Cabot, Alexandre
TI - The steepest descent dynamical system with control. Applications to constrained minimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 2
SP - 243
EP - 258
AB - Let $H$ be a real Hilbert space, $\Phi _1: H\rightarrow \mathbb {R}$ a convex function of class ${\mathcal {C}}^1$ that we wish to minimize under the convex constraint $S$. A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function $\Phi _1+\delta _S$. Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function $\Phi _0: H\rightarrow \mathbb {R}$ whose critical points coincide with $S$ and a control parameter $\varepsilon :\mathbb {R}_+\rightarrow \mathbb {R}_+$ tending to zero, we consider the “Steepest Descent and Control” system\[(SDC) \qquad \dot{x}(t)+\nabla \Phi _0(x(t))+\varepsilon (t)\, \nabla \Phi _1(x(t))=0,\]where the control $\varepsilon $ satisfies $\int _0^{+\infty } \varepsilon (t)\, {\rm d}t =+\infty $. This last condition ensures that $\varepsilon $ “slowly” tends to $0$. When $H$ is finite dimensional, we then prove that $d(x(t), \operatorname{argmin}_S \Phi _1) \rightarrow 0 \quad (t\rightarrow +\infty ),$ and we give sufficient conditions under which $x(t) \rightarrow \bar{x}\in \,\operatorname{argmin}_S \Phi _1$. We end the paper by numerical experiments allowing to compare the $(SDC)$ system with the other systems already mentioned.
LA - eng
KW - dissipative dynamical system; steepest descent method; constrained optimization; convex minimization; asymptotic behaviour; non-linear oscillator
UR - http://eudml.org/doc/244608
ER -
References
top- [1] A.S. Antipin, Minimization of convex functions on convex sets by means of differential equations. Differ. Equ. 30 (1994) 1365-1375 (1995). Zbl0852.49021MR1347800
- [2] V. Arnold, Equations différentielles ordinaires. Éditions de Moscou (1974). Zbl0296.34002MR361232
- [3] H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ. 128 (1996) 519-540. Zbl0886.49024MR1398330
- [4] H. Attouch and M.-O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non isolated equilibria. J. Differ. Equ. 179 (2002) 278-310. Zbl1007.34049MR1883745
- [5] H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution. Lect. Notes 5 (1972).
- [6] R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. Zbl0319.47041MR377609
- [7] A. Cabot and M.-O. Czarnecki, Asymptotic control of pairs of oscillators coupled by a repulsion, with non isolated equilibria. SIAM J. Control Optim. 41 (2002) 1254-1280. Zbl1031.34057MR1972511
- [8] A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991). Zbl0726.58001MR1084372
- [9] W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra. Academic Press, New York (1974). Zbl0309.34001MR486784
- [10] J.P. Lasalle and S. Lefschetz, Stability by Lyapounov’s Direct Method with Applications. Academic Press, New York (1961). Zbl0098.06102
- [11] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. Zbl0179.19902MR211301
- [12] H. Reinhardt, Equations différentielles. Fondements et applications. Dunod, Paris, 2 edn. (1989). Zbl0956.34500MR679690
- [13] A.N. Tikhonov and V.Ya. Arsenine, Méthodes de résolution de problèmes mal posés. MIR (1976). MR455367
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.