# Receding horizon optimal control for infinite dimensional systems

ESAIM: Control, Optimisation and Calculus of Variations (2002)

- Volume: 8, page 741-760
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topIto, Kazufumi, and Kunisch, Karl. "Receding horizon optimal control for infinite dimensional systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 741-760. <http://eudml.org/doc/244631>.

@article{Ito2002,

abstract = {The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.},

author = {Ito, Kazufumi, Kunisch, Karl},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {receding horizon control; control Lyapunov function; Lyapunov equations; closed loop dissipative; minimum value function; Navier–Stokes equations; closed loop dissipative system; Navier-Stokes equations},

language = {eng},

pages = {741-760},

publisher = {EDP-Sciences},

title = {Receding horizon optimal control for infinite dimensional systems},

url = {http://eudml.org/doc/244631},

volume = {8},

year = {2002},

}

TY - JOUR

AU - Ito, Kazufumi

AU - Kunisch, Karl

TI - Receding horizon optimal control for infinite dimensional systems

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2002

PB - EDP-Sciences

VL - 8

SP - 741

EP - 760

AB - The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

LA - eng

KW - receding horizon control; control Lyapunov function; Lyapunov equations; closed loop dissipative; minimum value function; Navier–Stokes equations; closed loop dissipative system; Navier-Stokes equations

UR - http://eudml.org/doc/244631

ER -

## References

top- [1] F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings and S. Wright, Nonlinear predictive control and moving horizon estimation – an introductory overview, Advances in Control, edited by P. Frank. Springer (1999) 391-449.
- [2] T.R. Bewley, Flow control: New challenges for a new Renaissance. Progr. Aerospace Sci. 37 (2001) 21-58.
- [3] H. Chen and F. Allgöwer, A quasi–infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34 (1998) 1205-1217. Zbl0947.93013
- [4] H. Choi, M. Hinze and K. Kunisch, Instantaneous control of backward facing step flow. Appl. Numer. Math. 31 (1999) 133-158. Zbl0939.76027MR1708955
- [5] H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. Zbl0810.76012MR1233904
- [6] R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design, State-Space an Lyapunov Techiques. Birkhäuser, Boston (1996). Zbl0857.93001MR1396307
- [7] W.H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). Zbl0773.60070MR1199811
- [8] C.E. Garcia, D.M. Prett and M. Morari, Model predictive control: Theory and practice – a survey. Automatica 25 (1989) 335-348. Zbl0685.93029
- [9] M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equation. Nonlinear Analysis TMA (to appear). Zbl1022.49001MR1904464
- [10] K. Ito and K. Kunisch, On asymptotic properties of receding horizon optimal control. SIAM J. Control Optim (to appear). Zbl1031.49033
- [11] A. Jadababaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. Preprint. Zbl1009.93028
- [12] D.L. Kleinman, An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control 15 (1970) 692-712.
- [13] D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35 (1990) 814-824. Zbl0715.49036MR1058366
- [14] V. Nevistič and J. A. Primbs, Finite receding horizon control: A general framework for stability and performance analysis. Preprint.
- [15] J.A. Primbs, V. Nevistič and J.C. Doyle, A receding horizon generalization of pointwise min–norm controllers. Preprint. Zbl0976.93024
- [16] P. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal predictive control (Feasibility implies stability). IEEE Trans. Automat. Control 44 (1999) 648-654. Zbl1056.93619MR1680132
- [17] F. Tanabe, Equations of Evolution. Pitman, London (1979). Zbl0417.35003
- [18] R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam (1984). Zbl0568.35002

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.