Receding horizon optimal control for infinite dimensional systems
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 741-760
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings and S. Wright, Nonlinear predictive control and moving horizon estimation – an introductory overview, Advances in Control, edited by P. Frank. Springer (1999) 391-449.
- [2] T.R. Bewley, Flow control: New challenges for a new Renaissance. Progr. Aerospace Sci. 37 (2001) 21-58.
- [3] H. Chen and F. Allgöwer, A quasi–infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34 (1998) 1205-1217. Zbl0947.93013
- [4] H. Choi, M. Hinze and K. Kunisch, Instantaneous control of backward facing step flow. Appl. Numer. Math. 31 (1999) 133-158. Zbl0939.76027MR1708955
- [5] H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. Zbl0810.76012MR1233904
- [6] R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design, State-Space an Lyapunov Techiques. Birkhäuser, Boston (1996). Zbl0857.93001MR1396307
- [7] W.H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). Zbl0773.60070MR1199811
- [8] C.E. Garcia, D.M. Prett and M. Morari, Model predictive control: Theory and practice – a survey. Automatica 25 (1989) 335-348. Zbl0685.93029
- [9] M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equation. Nonlinear Analysis TMA (to appear). Zbl1022.49001MR1904464
- [10] K. Ito and K. Kunisch, On asymptotic properties of receding horizon optimal control. SIAM J. Control Optim (to appear). Zbl1031.49033
- [11] A. Jadababaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. Preprint. Zbl1009.93028
- [12] D.L. Kleinman, An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control 15 (1970) 692-712.
- [13] D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35 (1990) 814-824. Zbl0715.49036MR1058366
- [14] V. Nevistič and J. A. Primbs, Finite receding horizon control: A general framework for stability and performance analysis. Preprint.
- [15] J.A. Primbs, V. Nevistič and J.C. Doyle, A receding horizon generalization of pointwise min–norm controllers. Preprint. Zbl0976.93024
- [16] P. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal predictive control (Feasibility implies stability). IEEE Trans. Automat. Control 44 (1999) 648-654. Zbl1056.93619MR1680132
- [17] F. Tanabe, Equations of Evolution. Pitman, London (1979). Zbl0417.35003
- [18] R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam (1984). Zbl0568.35002