A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems
- Volume: 48, Issue: 6, page 1615-1638
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. Altmüller and L. Grüne, Distributed and boundary model predictive control for the heat equation. GAMM Mitteilungen35 (2012) 131–145. Zbl1256.49033MR3001234
- [2] A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM (2005). Zbl1158.93001MR2155615
- [3] J.A. Atwell and B.B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model.33 (2001) 1–19. Zbl0964.93032MR1812538
- [4] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim.39 (2000) 113–132. Zbl0967.65080MR1780911
- [5] P. Benner, V. Mehrmann and D. Sorensen, Dimension reduction of large-scale systems, vol. 45 of Lect. Notes Computational Science and Engineering. Berlin, Springer (2005). Zbl1066.65004MR2516498
- [6] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput.32 (2010) 997–1019. Zbl1221.35030MR2639603
- [7] L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput.50 (2012) 287–305. Zbl1244.65094MR2886329
- [8] J. Eftang, D. Huynh, D. Knezevic and A. Patera, A two-step certified reduced basis method. J. Sci. Comput.51 (2012) 28–58. Zbl1244.65172MR2891945
- [9] A.-L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34 (2012) A2812–A2836. Zbl1255.76024MR3023727
- [10] M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C.R. Math.349 (2011) 873–877. Zbl1232.49039MR2835894
- [11] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. Zbl1079.65096MR2136204
- [12] M. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations. SIAM J. Control Optim. (2011) 1150–1170. Zbl1232.65099MR2806579
- [13] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN 42 (2008) 277–302. Zbl05262088MR2405149
- [14] W. Hager, Multiplier methods for nonlinear optimal control. SIAM J. Numer. Anal.27 (1990) 1061–1080. Zbl0717.49024MR1051124
- [15] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, vol. 23 of Math. Model. Theor. Appl. Springer (2009). Zbl1167.49001MR2516528
- [16] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Math.345 (2007) 473–478. Zbl1127.65086MR2367928
- [17] L. Iapichino, S. Ulbrich and S. Volkwein. Multiobjective PDE-constrained optimization using the reduced-basis method. Technical report, Universität Konstanz (2013).
- [18] K. Ito and K. Kunisch, Receding horizon optimal control for infinite dimensional systems. ESAIM: COCV 8 (2002) 741–760. Zbl1066.49020MR1932971
- [19] K. Ito and K. Kunisch, Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal.46 (2008) 2867–2891. Zbl1178.93033MR2439495
- [20] K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys.143 (1998) 403–425. Zbl0936.76031MR1631176
- [21] K. Ito and S.S. Ravindran, A reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid D.15 (2001) 97–113. Zbl1036.76011MR1895508
- [22] M. Kärcher, The reduced-basis method for parametrized linear-quadratic elliptic optimal control problems. Master’s thesis, Technische Universität München (2011). Zbl1232.49039
- [23] M. Kärcher and M.A. Grepl. A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: COCV 20 (2014) 416–441. Zbl1287.49032
- [24] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl.102 (1999) 345–371. Zbl0949.93039MR1706822
- [25] K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst.3 (2004) 701–722. Zbl1058.35061MR2111244
- [26] G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich, Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics. Birkhäuser Basel (2012). Zbl1231.49001MR3076074
- [27] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971). Zbl0203.09001MR271512
- [28] K. Malanowski, C. Buskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, vol. 195. CRC Press (1997) 253–284. Zbl0883.49025MR1472274
- [29] F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. Zbl1280.49046MR3118259
- [30] I. B. Oliveira, A “HUM” Conjugate Gradient Algorithm for Constrained Nonlinear Optimal Control: Terminal and Regulator Problems. Ph.D. thesis, Massachusetts Institute of Technology (2002).
- [31] C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluid. Eng.124 (2002) 70–80.
- [32] A.M. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23 of Springer Ser. Comput. Math. Springer (2008). Zbl1151.65339
- [33] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Method. E.15 (2008) 229–275. Zbl1304.65251MR2430350
- [34] G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg.196 (2007) 1244–1260. Zbl1173.76352MR2281777
- [35] T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Model. Dyn.17 (2011) 355–369. Zbl1302.49045MR2823468
- [36] F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl.44 (2009) 83–115. Zbl1189.49050MR2556846
- [37] K. Urban and A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math.350 (2012) 203–207. Zbl1242.35157MR2891112
- [38] K. Veroy, D.V. Rovas and A.T. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. Special Volume: A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1007–1028. Zbl1092.35031MR1932984