On the topological complexity of infinitary rational relations

Olivier Finkel

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2003)

  • Volume: 37, Issue: 2, page 105-113
  • ISSN: 0988-3754

Abstract

top
We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].

How to cite

top

Finkel, Olivier. "On the topological complexity of infinitary rational relations." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 37.2 (2003): 105-113. <http://eudml.org/doc/244647>.

@article{Finkel2003,
abstract = {We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].},
author = {Finkel, Olivier},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {infinitary rational relations; topological properties; Borel and analytic sets},
language = {eng},
number = {2},
pages = {105-113},
publisher = {EDP-Sciences},
title = {On the topological complexity of infinitary rational relations},
url = {http://eudml.org/doc/244647},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Finkel, Olivier
TI - On the topological complexity of infinitary rational relations
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 105
EP - 113
AB - We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].
LA - eng
KW - infinitary rational relations; topological properties; Borel and analytic sets
UR - http://eudml.org/doc/244647
ER -

References

top
  1. [1] M.-P. Béal and O. Carton, Determinization of Transducers over Infinite Words, in ICALP’2000, edited by U. Montanari et al. Springer, Lect. Notes Comput. Sci. 1853 (2000) 561-570. Zbl0973.68113
  2. [2] J. Berstel, Transductions and Context Free Languages. Teubner Verlag (1979). Zbl0424.68040MR549481
  3. [3] J.R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science, in Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11. Zbl0147.25103MR183636
  4. [4] Ch. Choffrut, Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-Séquentielles en tant que Relations Rationnelles. Theoret. Comput. Sci. 5 (1977) 325-338. Zbl0376.94022MR504457
  5. [5] Ch. Choffrut and S. Grigorieff, Uniformization of Rational Relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71. Zbl0944.68107MR1719021
  6. [6] J. Duparc, O. Finkel and J.-P. Ressayre, Computer Science and the Fine Structure of Borel Sets. Theoret. Comput. Sci. 257 (2001) 85-105. Zbl0971.03044MR1824849
  7. [7] J. Engelfriet and H.J. Hoogeboom, X-Automata on ω -Words. Theoret. Comput. Sci. 110 (1993) 1-51. Zbl0777.68058MR1208658
  8. [8] F. Gire, Relations Rationnelles Infinitaires, Thèse de troisième cycle, Université Paris-7, France (1981). 
  9. [9] F. Gire, Une Extension aux Mots Infinis de la Notion de Transduction Rationnelle, in 6th GI Conf. Springer, Lect. Notes Comput. Sci. 145 (1983) 123-139. Zbl0495.68063
  10. [10] F. Gire and M. Nivat, Relations Rationnelles Infinitaires. Calcolo XXI (1984) 91-125. Zbl0552.68064MR799616
  11. [11] A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag (1995). Zbl0819.04002MR1321597
  12. [12] K. Kuratowski, Topology. Academic Press, New York (1966). Zbl0158.40802MR217751
  13. [13] L.H. Landweber, Decision Problems for ω -Automata. Math. Syst. Theory 3 (1969) 376-384. Zbl0182.02402MR260595
  14. [14] H. Lescow and W. Thomas, Logical Specifications of Infinite Computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Springer, Lect. Notes Comput. Sci. 803 (1994) 583-621. MR1292687
  15. [15] Y.N. Moschovakis, Descriptive Set Theory. North-Holland, Amsterdam (1980). Zbl0433.03025MR561709
  16. [16] D. Niwinski, An Example of Non Borel Set of Infinite Trees Recognizable by a Rabin Automaton, in Polish, Manuscript. University of Warsaw (1985). 
  17. [17] D. Perrin and J.-E. Pin, Infinite Words, Book in preparation, available from http://www.liafa.jussieu.fr/jep/InfiniteWords.html 
  18. [18] J.-E. Pin, Logic, Semigroups and Automata on Words. Ann. Math. Artificial Intelligence 16 (1996) 343-384. Zbl0860.68071MR1389853
  19. [19] C. Prieur, Fonctions Rationnelles de Mots Infinis et Continuité, Thèse de Doctorat, Université Paris-7, France (2000). 
  20. [20] P. Simonnet, Automates et Théorie Descriptive, Ph.D. thesis, Université Paris-7, France (1992). JFM48.0679.04
  21. [21] P. Simonnet, Automate d’Arbres Infinis et Choix Borélien. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 97-100. Zbl0791.68112
  22. [22] L. Staiger, Hierarchies of Recursive ω -Languages. J. Inform. Process. Cybernetics EIK 22 (1986) 219-241. Zbl0627.03024MR855527
  23. [23] L. Staiger, ω -Languages, Handbook of Formal languages, Vol. 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin (1997). Zbl0866.68057MR1470017
  24. [24] W. Thomas, Automata on Infinite Objects, edited by J. Van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 133-191. Zbl0900.68316MR1127189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.