Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series

Quentin Carayol; Francis Collino

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2004)

  • Volume: 38, Issue: 2, page 371-394
  • ISSN: 0764-583X

Abstract

top
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave e i s ^ · v in terms of spherical harmonics { Y , m ( s ^ ) } | m | . We consider the truncated series where the summation is performed over the ( , m ) ’s satisfying | m | L . We prove that if v = | v | is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies L + 1 2 v + C W 2 3 ( K ϵ - δ v γ ) v 1 3 where W is the Lambert function and C , K , δ , γ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.

How to cite

top

Carayol, Quentin, and Collino, Francis. "Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.2 (2004): 371-394. <http://eudml.org/doc/244662>.

@article{Carayol2004,
abstract = {We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave $\{\rm e\}^\{i \hat\{s\} \cdot \vec\{v\}\}$ in terms of spherical harmonics $\lbrace Y_\{\ell , m\}(\hat\{s\}) \rbrace _\{|m|\le \ell \le \infty \} $. We consider the truncated series where the summation is performed over the $(\ell ,m)$’s satisfying $|m| \le \ell \le L$. We prove that if $v = |\vec\{v\}|$ is large enough, the truncated series gives rise to an error lower than $\epsilon $ as soon as $L$ satisfies $L+\frac\{1\}\{2\} \simeq v + C W^\{\frac\{2\}\{3\}\}(K \epsilon ^\{-\delta \} v^\gamma )\, v^\{\frac\{1\}\{3\}\}$ where $W$ is the Lambert function and $C\,, K, \, \delta , \, \gamma $ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.},
author = {Carayol, Quentin, Collino, Francis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Jacobi-Anger; fast multipole method; truncation error},
language = {eng},
number = {2},
pages = {371-394},
publisher = {EDP-Sciences},
title = {Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series},
url = {http://eudml.org/doc/244662},
volume = {38},
year = {2004},
}

TY - JOUR
AU - Carayol, Quentin
AU - Collino, Francis
TI - Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 2
SP - 371
EP - 394
AB - We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave ${\rm e}^{i \hat{s} \cdot \vec{v}}$ in terms of spherical harmonics $\lbrace Y_{\ell , m}(\hat{s}) \rbrace _{|m|\le \ell \le \infty } $. We consider the truncated series where the summation is performed over the $(\ell ,m)$’s satisfying $|m| \le \ell \le L$. We prove that if $v = |\vec{v}|$ is large enough, the truncated series gives rise to an error lower than $\epsilon $ as soon as $L$ satisfies $L+\frac{1}{2} \simeq v + C W^{\frac{2}{3}}(K \epsilon ^{-\delta } v^\gamma )\, v^{\frac{1}{3}}$ where $W$ is the Lambert function and $C\,, K, \, \delta , \, \gamma $ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.
LA - eng
KW - Jacobi-Anger; fast multipole method; truncation error
UR - http://eudml.org/doc/244662
ER -

References

top
  1. [1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Dover, New York (1964). 
  2. [2] S. Amini and A. Profit, Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23–33. Zbl0973.65092
  3. [3] Q. Carayol, Développement et analyse d’une méthode multipôle multiniveau pour l’électromagnétisme. Ph.D. Thesis, Université Paris VI Pierre et Marie Curie, Paris (2002). 
  4. [4] O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic pdes to the 2D Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. Zbl0955.65081
  5. [5] W.C. Chew, J.M. Jin, E. Michielssen and J.M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001). 
  6. [6] R. Coifman, V. Rokhlin and S. Greengard, The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7–12. 
  7. [7] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). Zbl0760.35053MR1183732
  8. [8] R. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5 (1996) 329–359. Zbl0863.65008
  9. [9] E. Darve, The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98–128 (electronic). Zbl0974.65033
  10. [10] E. Darve, The fast multipole method: Numerical implementation. J. Comput. Phys. 160 (2000) 196–240. Zbl0974.78012
  11. [11] E. Darve and P. Havé, Efficient fast multipole method for low frequency scattering. J. Comput. Phys. (to appear). Zbl1073.65133MR2061248
  12. [12] M.A. Epton and B. Dembart, Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865–897. Zbl0852.31006
  13. [13] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 5th edn., Academic Press (1994). Zbl0918.65002MR1243179
  14. [14] S. Koc, J. Song and W.C. Chew, Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906–921 (electronic). Zbl0924.65116
  15. [15] L. Lorch, Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237–240. Zbl0505.33007
  16. [16] L. Lorch, Corrigendum: “Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237–240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. Zbl0505.33007
  17. [17] J.C. Nédélec, Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). Zbl0981.35002MR1822275
  18. [18] S. Ohnuki and W.C. Chew, Numerical accuracy of multipole expansion for 2-d mlfma. IEEE Trans. Antennas Propagat. 51 (2003) 1883–1890. 
  19. [19] J. Rahola, Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333–358. Zbl0854.65122
  20. [20] G.N. Watson, Bessel functions and Kapteyn series. Proc. London Math. Soc. (1916) 150–174. Zbl46.0576.03JFM46.0576.03
  21. [21] G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press (1966). Zbl0174.36202MR1349110JFM48.0412.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.