Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise[1]; Cristina Pignotti

  • [1] Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 563-578
  • ISSN: 1292-8119

Abstract

top
We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

How to cite

top

Nicaise, Serge, and Pignotti, Cristina. "Boundary stabilization of Maxwell’s equations with space-time variable coefficients." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 563-578. <http://eudml.org/doc/244668>.

@article{Nicaise2003,
abstract = {We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.},
affiliation = {Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise},
author = {Nicaise, Serge, Pignotti, Cristina},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Maxwell’s system; boundary stabilization; Maxwell's system},
language = {eng},
pages = {563-578},
publisher = {EDP-Sciences},
title = {Boundary stabilization of Maxwell’s equations with space-time variable coefficients},
url = {http://eudml.org/doc/244668},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Nicaise, Serge
AU - Pignotti, Cristina
TI - Boundary stabilization of Maxwell’s equations with space-time variable coefficients
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 563
EP - 578
AB - We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.
LA - eng
KW - Maxwell’s system; boundary stabilization; Maxwell's system
UR - http://eudml.org/doc/244668
ER -

References

top
  1. [1] H. Barucq and B. Hanouzet, Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver–Müller II. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1019-1024. Zbl0776.35073
  2. [2] C. Castro and E. Zuazua, Localization of waves in 1 - d highly heterogeneous media. Arch. Rational Mech. Anal. 164 (2002) 39-72. Zbl1016.35003MR1921162
  3. [3] M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Israel J. Math. 11 (1972) 57-94. Zbl0249.34049MR300166
  4. [4] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Vol. 3 (1990), Vol. 5 (1992). Zbl0683.35001
  5. [5] M. Eller, J.E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp. Appl. Math. 21 (2002) 135-165. Zbl1119.93402MR2009950
  6. [6] L.C. Evans, Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math. 26 (1977) 1-42. Zbl0349.34043MR440431
  7. [7] P. Grisvard, Elliptic problems in nonsmooth Domains. Pitman, Boston, Monogr. Stud. Math. 21 (1985). Zbl0695.35060MR775683
  8. [8] T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967) 508-520. Zbl0163.38303MR226230
  9. [9] T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, CIME, II Ciclo. Cortona (1976) 125-191. Zbl0456.35052
  10. [10] T. Kato, Abstract differential equations and nonlinear mixed problems. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Lezione Fermiane, Pisa (1985). Zbl0648.35001MR930267
  11. [11] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Collection RMA Paris 36 (1994). Zbl0937.93003MR1359765
  12. [12] V. Komornik, Boundary stabilization, observation and control of Maxwell’s equations. Panamer. Math. J. 4 (1994) 47-61. Zbl0849.35136
  13. [13] J.E. Lagnese, Exact controllability of Maxwell’s equations in a general region. SIAM J. Control Optim. 27 (1989) 374-388. Zbl0678.49032
  14. [14] C.-Y. Lin, Time-dependent nonlinear evolution equations. Differential Integral Equations 15 (2002) 257-270. Zbl1041.34049MR1870643
  15. [15] S. Nicaise, M. Eller and J.E. Lagnese, Stabilization of heterogeneous Maxwell’s equations by nonlinear boundary feedbacks. EJDE 2002 (2002) 1-26. Zbl1030.93026
  16. [16] S. Nicaise, Exact boundary controllability of Maxwell’s equations in heteregeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145-1170. Zbl0963.93041
  17. [17] L. Paquet, Problèmes mixtes pour le système de Maxwell. Ann. Fac. Sci. Toulouse Math. 4 (1982) 103-141. Zbl0529.58038MR687546
  18. [18] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag,, Appl. Math. Sci. 44 (1983). Zbl0516.47023MR710486
  19. [19] K.D. Phung, Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. Zbl0942.93002
  20. [20] C. Pignotti, Observability and controllability of Maxwell’s equations. Rend. Mat. Appl. 19 (1999) 523-546. Zbl0979.93057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.