Contrôle et stabilisation d'ondes électromagnétiques
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 87-137
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPhung, Kim Dang. "Contrôle et stabilisation d'ondes électromagnétiques." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 87-137. <http://eudml.org/doc/197325>.
@article{Phung2010,
abstract = {
We consider the exact controllability and stabilization of Maxwell
equation by using results on the propagation of singularities of the
electromagnetic field. We will assume geometrical control condition and use
techniques of the work of Bardos et al. on the wave
equation. The problem of internal stabilization will be treated with more
attention because the condition divE=0 is not preserved by the system of
Maxwell with Ohm's law.
},
author = {Phung, Kim Dang},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Contrôlabilité; stabilisation; équation de Maxwell.; exact controllability; Maxwell equation; boundary controllability; internal controllability; HUM method; boundary stabilization},
language = {fre},
month = {3},
pages = {87-137},
publisher = {EDP Sciences},
title = {Contrôle et stabilisation d'ondes électromagnétiques},
url = {http://eudml.org/doc/197325},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Phung, Kim Dang
TI - Contrôle et stabilisation d'ondes électromagnétiques
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 87
EP - 137
AB -
We consider the exact controllability and stabilization of Maxwell
equation by using results on the propagation of singularities of the
electromagnetic field. We will assume geometrical control condition and use
techniques of the work of Bardos et al. on the wave
equation. The problem of internal stabilization will be treated with more
attention because the condition divE=0 is not preserved by the system of
Maxwell with Ohm's law.
LA - fre
KW - Contrôlabilité; stabilisation; équation de Maxwell.; exact controllability; Maxwell equation; boundary controllability; internal controllability; HUM method; boundary stabilization
UR - http://eudml.org/doc/197325
ER -
References
top- H. Barucq, Étude asymptotique du système de Maxwell avec conditions aux limites absorbantes. Thèse de l'université de Bordeaux I (1993). g
- N. Burq, Mesures semi-classiques et mesures de défaut, Séminaire Bourbaki. Asterisque245 (1997) 167-195. g
- H. Barucq et B. Hanouzet, Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II. C. R. Acad. Sci. Paris Sér. I Math.316 (1993) 1019-1024. g
- C. Bardos, L. Halpern, G. Lebeau, J. Rauch et E. Zuazua, Stabilisation de l'équation des ondes au moyen d'un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal.4 (1991) 285-291. g
- C. Bardos, G. Lebeau et J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1065. g
- M. Cessenat, Mathematical method in electromagnetism - linear theorie and applications. Ser. Adv. Math. Appl. Sci. 41 (1996). g
- R. Dautray et J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson (1988). g
- V. Komornik, Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J.4 (1994) 47-61. g
- J. Lagnese, Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim.27 (1989) 374-388. g
- G. Lebeau, Contrôle et stabilisation hyperboliques. Séminaire E.D.P. École Polytechnique (1990). g
- J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués. RMA, Masson, Paris (1988). g
- J.-L. Lions et E. Magenes, Problèmes aux limites non homogènes. Dunod (1968). g
- G. Lebeau et L. Robbiano, Stabilisation de l'équation des ondes par le bord. Duke Math. J.86 (1997) 465-491. g
- R. Melrose et J. Sjöstrand, Singularities of boundary value problems I. Comm. Pure Appl. Math.31 (1978) 593-617. g
- R. Melrose et J. Sjöstrand, Singularities of boundary value problems II. Comm. Pure Appl. Math.35 (1982) 129-168. g
- O. Nalin, Contrôlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math.309 (1989) 811-815. g
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). g
- K.-D. Phung, Stabilisation frontière du système de Maxwell avec la condition aux limites absorbante de Silver-Müller. C. R. Acad. Sci. Paris Sér. I Math.3233 (1995) 187-192. g
- K.-D. Phung, Controlabilité exacte et stabilisation interne des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math.3233 (1996) 169-174. g
- J.V. Ralston, Solutions of Wave equation with localized energy. Comm. Pure. Appl. Math.22 (1969) 807-823. g
- J. Rauch et M. Taylor, Penetration into shadow region and unique continuation properties in hyperbolic mixed problems. Indiana Univ. Mathematics J.22 (1972) 277-284. g
- M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J. (1981). g
- M. Taylor, Reflection of singularities of solutions to systems of differential equations. Comm. Pure Appl. Math.28 (1975) 457-478. g
- M. Taylor, Grazing rays and reflection of singularities of solutions to wave equations II. Comm. Pure Appl. Math.29 (1976) 463-481. g
- N. Weck, Exact boundary controllability for a Maxwell problem, submitted to SIAM J. Control. Optim. g
- N. Weck et K.J. Witsch, Low frequency asymptotics for dissipative Maxwell's equations in bounded domains. Math. Methods Appl. Sci.13 (1990) 81-93. g
- K. Yamamoto, Singularities of solutions to the boundary value problem for elastic and Maxwell's equations. Japan J. Math. (N.S.)14 (1988) 119-163.
Citations in EuDML Documents
top- John E. Lagnese, A singular perturbation problem in exact controllability of the Maxwell system
- Serge Nicaise, Cristina Pignotti, Boundary stabilization of Maxwell’s equations with space-time variable coefficients
- John E. Lagnese, A Singular Perturbation Problem in Exact Controllability of the Maxwell System
- Serge Nicaise, Cristina Pignotti, Boundary stabilization of Maxwell's equations with space-time variable coefficients
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.