Finite element methods on non-conforming grids by penalizing the matching constraint
- Volume: 37, Issue: 2, page 357-372
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBoillat, Eric. "Finite element methods on non-conforming grids by penalizing the matching constraint." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 357-372. <http://eudml.org/doc/244673>.
@article{Boillat2003,
abstract = {The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.},
author = {Boillat, Eric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element methods; non-matching grids; penalty technique; elliptic problems; error estimate},
language = {eng},
number = {2},
pages = {357-372},
publisher = {EDP-Sciences},
title = {Finite element methods on non-conforming grids by penalizing the matching constraint},
url = {http://eudml.org/doc/244673},
volume = {37},
year = {2003},
}
TY - JOUR
AU - Boillat, Eric
TI - Finite element methods on non-conforming grids by penalizing the matching constraint
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 357
EP - 372
AB - The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.
LA - eng
KW - finite element methods; non-matching grids; penalty technique; elliptic problems; error estimate
UR - http://eudml.org/doc/244673
ER -
References
top- [1] R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975). Zbl0314.46030MR450957
- [2] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. Zbl0944.65114
- [3] F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289–302. Zbl0868.65082
- [4] M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211–236. Zbl0428.65059
- [5] F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
- [6] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [7] P. Clement, Approximation by finite element using local regularization. RAIRO Ser. Rouge 8 (1975) 77–84. Zbl0368.65008
- [8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
- [9] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968). Zbl0165.10801MR247243
- [10] Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13–51. Zbl0797.65094
- [11] J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9–15. Zbl0229.65079
- [12] D. Schotzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667–697. Zbl0958.76049
- [13] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139–148. Zbl0856.65130
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.