Homogenization of evolution problems for a composite medium with very small and heavy inclusions

Michel Bellieud

ESAIM: Control, Optimisation and Calculus of Variations (2005)

  • Volume: 11, Issue: 2, page 266-284
  • ISSN: 1292-8119

Abstract

top
We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div ( a ε u ε ) = f in Ω × ( 0 , T ) + boundary conditions , n { 1 , 2 } , when the coefficients ρ ε , a ε (defined in Ø ) take possibly high values on a ε -periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.

How to cite

top

Bellieud, Michel. "Homogenization of evolution problems for a composite medium with very small and heavy inclusions." ESAIM: Control, Optimisation and Calculus of Variations 11.2 (2005): 266-284. <http://eudml.org/doc/244688>.

@article{Bellieud2005,
abstract = {We study the homogenization of parabolic or hyperbolic equations like\[ \rho \_\varepsilon \{\partial ^n u\_\varepsilon \over \partial t^n\}- \{\rm div\}( a\_\varepsilon \nabla u\_\varepsilon ) =f \ \ \text\{in\} \quad \{\Omega \times (0,T)\}+ \ \ \text\{boundary\} \text\{conditions\}, \quad n \in \lbrace 1,2\rbrace , \]when the coefficients $\rho _\varepsilon $, $a_\varepsilon $ (defined in $Ø$) take possibly high values on a $\varepsilon $-periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.},
author = {Bellieud, Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {homogenization; memory effects; grain-like inclusions; limit problem},
language = {eng},
number = {2},
pages = {266-284},
publisher = {EDP-Sciences},
title = {Homogenization of evolution problems for a composite medium with very small and heavy inclusions},
url = {http://eudml.org/doc/244688},
volume = {11},
year = {2005},
}

TY - JOUR
AU - Bellieud, Michel
TI - Homogenization of evolution problems for a composite medium with very small and heavy inclusions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2005
PB - EDP-Sciences
VL - 11
IS - 2
SP - 266
EP - 284
AB - We study the homogenization of parabolic or hyperbolic equations like\[ \rho _\varepsilon {\partial ^n u_\varepsilon \over \partial t^n}- {\rm div}( a_\varepsilon \nabla u_\varepsilon ) =f \ \ \text{in} \quad {\Omega \times (0,T)}+ \ \ \text{boundary} \text{conditions}, \quad n \in \lbrace 1,2\rbrace , \]when the coefficients $\rho _\varepsilon $, $a_\varepsilon $ (defined in $Ø$) take possibly high values on a $\varepsilon $-periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.
LA - eng
KW - homogenization; memory effects; grain-like inclusions; limit problem
UR - http://eudml.org/doc/244688
ER -

References

top
  1. [1] M. Bellieud, Homogenization of evolution problems in a fiber reinforced structure. J. Convex Anal. 11 (2004) 363–385. Zbl1071.35011
  2. [2] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects. Ann. Scuola Norm. Sup. Cl. Sci. IV 26 (1998) 407–436. Zbl0919.35014
  3. [3] M. Bellieud and I. Gruais, Homogénéisation d’une structure élastique renforcée de fibres très rigides. Effets non locaux. C. R. Math., Problèmes mathématiques de la mécanique 337 (2003) 493–498. Zbl1027.35011
  4. [4] M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects. J. Math. Pures Appl. 84 (2005) 55–96. Zbl1079.74052
  5. [5] H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). Zbl0511.46001MR697382
  6. [6] G. Dal Maso, An introduction to Γ -Convergence. Progress Nonlinear Differential Equations Appl., Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  7. [7] E.Y. Khruslov, Homogenized models of composite media. Progress Nonlinear Differential Equations Appl., Birkhäuser (1991). Zbl0737.73009MR1145750
  8. [8] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1 (1968). Zbl0165.10801
  9. [9] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994) 368–421. Zbl0808.46042
  10. [10] G. Panasenko, Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions. C. R. Acad. Sci. Paris I 321 (1995) 1109–1114. Zbl0840.73005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.