Derivation of a homogenized two-temperature model from the heat equation

Laurent Desvillettes; François Golse; Valeria Ricci

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 6, page 1583-1613
  • ISSN: 0764-583X

Abstract

top
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138].

How to cite

top

Desvillettes, Laurent, Golse, François, and Ricci, Valeria. "Derivation of a homogenized two-temperature model from the heat equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1583-1613. <http://eudml.org/doc/273228>.

@article{Desvillettes2014,
abstract = {This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138].},
author = {Desvillettes, Laurent, Golse, François, Ricci, Valeria},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {heat equation; homogenization; infinite diffusion limit; thermal nonequilibrium models; two-temperatures model},
language = {eng},
number = {6},
pages = {1583-1613},
publisher = {EDP-Sciences},
title = {Derivation of a homogenized two-temperature model from the heat equation},
url = {http://eudml.org/doc/273228},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Desvillettes, Laurent
AU - Golse, François
AU - Ricci, Valeria
TI - Derivation of a homogenized two-temperature model from the heat equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1583
EP - 1613
AB - This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138].
LA - eng
KW - heat equation; homogenization; infinite diffusion limit; thermal nonequilibrium models; two-temperatures model
UR - http://eudml.org/doc/273228
ER -

References

top
  1. [1] G. Bal, Transport through diffusive and nondiffusive regions, embedded objects and clear layers. SIAM J. Appl. Math.62 (2002) 1677–1697. Zbl1020.45004MR1918572
  2. [2] M. Bellieud, Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: COCV 11 (2005) 266–284. Zbl1091.35011MR2141890
  3. [3] M. Bellieud, A notion of capacity related to elasticity. Applications to homogenization. Arch. Rational Mech. Anal. 203 (2012) 137–187. Zbl1284.74012MR2864409
  4. [4] M. Bellieud, C. Licht and S. Orankitjaroen, Nonlinear capacitary problems for a non periodic distribution of fibers. Appl. Math. Res. Express2014 (2014) 1–51. Zbl1291.74151MR3181780
  5. [5] F. Boyer and P. Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Math. Appl., vol. 52. Springer Verlag, Berlin, Heidelberg (2006). Zbl1105.76003MR2248409
  6. [6] C.E. Brennen, Fundamentals of Multiphase Flows. Cambridge University Press (2005). Zbl1179.76004
  7. [7] H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1987). Zbl1147.46300MR697382
  8. [8] D. Cioranescu and F. Murat, Un terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar vol. II, Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138. Zbl0496.35030MR652509
  9. [9] L. Desvillettes, F. Golse and V. Ricci, The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow. J. Stat. Phys.131 (2008) 941–967. Zbl1154.76018MR2398959
  10. [10] F. Fichot, F. Duval, N. Trégourès, C. Béchaud and M. Quintard, The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Design236 (2006) 2144–2163. 
  11. [11] V.A. L’vov and E. Ya. Hruslov, Perturbations of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra267 (1978) 173–177. Zbl0439.35060
  12. [12] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968). Zbl0165.10801
  13. [13] A. Mikelic and M. Primicerio, Homogenization of heat conduction in materials with periodic inclusions of a perfect conductor. In Progress in partial differential equations: calculus of variations, applications. Pont-Mousson, 1991, vol. 267 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1992) 244–256. Zbl0819.35013MR1194203
  14. [14] A. Mikelic, M. Primicerio, Homogenization of the heat equation for a domain with a network of pipes with a well-mixed fluid. Ann. Mat. Pura Appl.166 (1994) 227–251. Zbl0814.35007MR1313806
  15. [15] F. Petit, F. Fichot, M. Quintard, Ecoulement diphasique en milieu poreux: modèle à non-équilibre local. Int. J. Therm. Sci.38 (1999) 239–249. Zbl0628.76095
  16. [16] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983. Zbl0561.65069MR773854
  17. [17] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.