Derivation of a homogenized two-temperature model from the heat equation
Laurent Desvillettes; François Golse; Valeria Ricci
- Volume: 48, Issue: 6, page 1583-1613
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDesvillettes, Laurent, Golse, François, and Ricci, Valeria. "Derivation of a homogenized two-temperature model from the heat equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1583-1613. <http://eudml.org/doc/273228>.
@article{Desvillettes2014,
abstract = {This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138].},
author = {Desvillettes, Laurent, Golse, François, Ricci, Valeria},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {heat equation; homogenization; infinite diffusion limit; thermal nonequilibrium models; two-temperatures model},
language = {eng},
number = {6},
pages = {1583-1613},
publisher = {EDP-Sciences},
title = {Derivation of a homogenized two-temperature model from the heat equation},
url = {http://eudml.org/doc/273228},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Desvillettes, Laurent
AU - Golse, François
AU - Ricci, Valeria
TI - Derivation of a homogenized two-temperature model from the heat equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1583
EP - 1613
AB - This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138].
LA - eng
KW - heat equation; homogenization; infinite diffusion limit; thermal nonequilibrium models; two-temperatures model
UR - http://eudml.org/doc/273228
ER -
References
top- [1] G. Bal, Transport through diffusive and nondiffusive regions, embedded objects and clear layers. SIAM J. Appl. Math.62 (2002) 1677–1697. Zbl1020.45004MR1918572
- [2] M. Bellieud, Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: COCV 11 (2005) 266–284. Zbl1091.35011MR2141890
- [3] M. Bellieud, A notion of capacity related to elasticity. Applications to homogenization. Arch. Rational Mech. Anal. 203 (2012) 137–187. Zbl1284.74012MR2864409
- [4] M. Bellieud, C. Licht and S. Orankitjaroen, Nonlinear capacitary problems for a non periodic distribution of fibers. Appl. Math. Res. Express2014 (2014) 1–51. Zbl1291.74151MR3181780
- [5] F. Boyer and P. Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Math. Appl., vol. 52. Springer Verlag, Berlin, Heidelberg (2006). Zbl1105.76003MR2248409
- [6] C.E. Brennen, Fundamentals of Multiphase Flows. Cambridge University Press (2005). Zbl1179.76004
- [7] H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1987). Zbl1147.46300MR697382
- [8] D. Cioranescu and F. Murat, Un terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar vol. II, Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138. Zbl0496.35030MR652509
- [9] L. Desvillettes, F. Golse and V. Ricci, The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow. J. Stat. Phys.131 (2008) 941–967. Zbl1154.76018MR2398959
- [10] F. Fichot, F. Duval, N. Trégourès, C. Béchaud and M. Quintard, The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Design236 (2006) 2144–2163.
- [11] V.A. L’vov and E. Ya. Hruslov, Perturbations of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra267 (1978) 173–177. Zbl0439.35060
- [12] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968). Zbl0165.10801
- [13] A. Mikelic and M. Primicerio, Homogenization of heat conduction in materials with periodic inclusions of a perfect conductor. In Progress in partial differential equations: calculus of variations, applications. Pont-Mousson, 1991, vol. 267 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1992) 244–256. Zbl0819.35013MR1194203
- [14] A. Mikelic, M. Primicerio, Homogenization of the heat equation for a domain with a network of pipes with a well-mixed fluid. Ann. Mat. Pura Appl.166 (1994) 227–251. Zbl0814.35007MR1313806
- [15] F. Petit, F. Fichot, M. Quintard, Ecoulement diphasique en milieu poreux: modèle à non-équilibre local. Int. J. Therm. Sci.38 (1999) 239–249. Zbl0628.76095
- [16] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983. Zbl0561.65069MR773854
- [17] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.