Approximation of the Snell envelope and american options prices in dimension one
ESAIM: Probability and Statistics (2002)
- Volume: 6, page 1-19
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBally, Vlad, and Saussereau, Bruno. "Approximation of the Snell envelope and american options prices in dimension one." ESAIM: Probability and Statistics 6 (2002): 1-19. <http://eudml.org/doc/244689>.
@article{Bally2002,
abstract = {We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.},
author = {Bally, Vlad, Saussereau, Bruno},
journal = {ESAIM: Probability and Statistics},
keywords = {dynamic programming; snell envelope; optimal stopping; optimal stopping problem; Black-Scholes model; tree method},
language = {eng},
pages = {1-19},
publisher = {EDP-Sciences},
title = {Approximation of the Snell envelope and american options prices in dimension one},
url = {http://eudml.org/doc/244689},
volume = {6},
year = {2002},
}
TY - JOUR
AU - Bally, Vlad
AU - Saussereau, Bruno
TI - Approximation of the Snell envelope and american options prices in dimension one
JO - ESAIM: Probability and Statistics
PY - 2002
PB - EDP-Sciences
VL - 6
SP - 1
EP - 19
AB - We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
LA - eng
KW - dynamic programming; snell envelope; optimal stopping; optimal stopping problem; Black-Scholes model; tree method
UR - http://eudml.org/doc/244689
ER -
References
top- [1] C. Baiocchi and G.A. Pozzi, Error estimates and free-boundary convergence for a finite-difference discretization of a parabolic variational inequality. RAIRO Anal. Numér./Numer. Anal. 11 (1977) 315-340. Zbl0371.65020MR464607
- [2] V. Bally, M.E. Caballero and B. Fernandez, Reflected BSDE’s, PDE’s and Variational Inequalities. J. Theoret. Probab. (submitted).
- [3] A. Bensoussans and J.-L. Lions, Applications of the Variational Inequalities in Stochastic Control. North Holland (1982). Zbl0478.49002MR653144
- [4] A.N. Borodin and P. Salminen, Handbook of Brownian Motion Facts and Formulae. Birkhauser (1996). Zbl0859.60001MR1477407
- [5] M. Broadie and J. Detemple, American option valuation: New bounds, approximations, and a comparison of existing methods. Rev. Financial Stud. 9 (1995) 1211-1250.
- [6] N. El Karoui, C. Kapoudjan, E. Pardoux, S. Peng and M.C. Quenez, Reflected Solutions of Backward Stochastic Differential Equations and related Obstacle Problems for PDE’s. Ann. Probab. 25 (1997) 702-737. Zbl0899.60047
- [7] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. John Wiley and Sons (1966). Zbl0138.10207MR210154
- [8] D. Lamberton, Error Estimates for the Binomial Approximation of American Put Options. Ann. Appl. Probab. 8 (1998) 206-233. Zbl0939.60022MR1620362
- [9] D. Lamberton, Brownian optimal stopping and random walks, Preprint 03/98. Université de Marne-la-Vallée (1998). Zbl1040.60032MR1885822
- [10] D. Lamberton and G. Pagès, Sur l’approximation des réduites. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990) 331-335. Zbl0704.60042
- [11] D. Lamberton and C. Rogers, Optimal Stopping and Embedding, Preprint 17/99. Université de Marne-la-Vallée (1999). Zbl0981.60049
- [12] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer Verlag, Berlin Heidelberg (1991). Zbl0731.60002MR1083357
- [13] A.W. Roberts and D.E. Varberg, Convex Functions. Academic Press, New York (1973). Zbl0271.26009MR442824
- [14] B. Saussereau, Sur une classe d’équations aux dérivées partielles. Ph.D. Thesis of the University of Le Mans, France (2000).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.