# Polypodic codes

Symeon Bozapalidis; Olympia Louscou-Bozapalidou

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)

- Volume: 36, Issue: 1, page 5-28
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topBozapalidis, Symeon, and Louscou-Bozapalidou, Olympia. "Polypodic codes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.1 (2002): 5-28. <http://eudml.org/doc/244716>.

@article{Bozapalidis2002,

abstract = {Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.},

author = {Bozapalidis, Symeon, Louscou-Bozapalidou, Olympia},

journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},

keywords = {code; polypode; trees; code decomposition},

language = {eng},

number = {1},

pages = {5-28},

publisher = {EDP-Sciences},

title = {Polypodic codes},

url = {http://eudml.org/doc/244716},

volume = {36},

year = {2002},

}

TY - JOUR

AU - Bozapalidis, Symeon

AU - Louscou-Bozapalidou, Olympia

TI - Polypodic codes

JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

PY - 2002

PB - EDP-Sciences

VL - 36

IS - 1

SP - 5

EP - 28

AB - Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.

LA - eng

KW - code; polypode; trees; code decomposition

UR - http://eudml.org/doc/244716

ER -

## References

top- [1] S. Bozapalidis, An Introduction to Polypodic Structures. J. Universal Comput. Sci. 5 (1999) 508-520. Zbl0964.08006MR1722381
- [2] J. Berstel and D. Perrin, Theory of Codes. Academic Press (1985). Zbl0587.68066MR797069
- [3] B. Courcelle, Graph rewriting: An Algebraic and Logic Approach, edited by J. van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 193-242. Zbl0900.68282MR1127190
- [4] F. Gécseg and M. Steinby, Tree Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, New York, Handb. Formal Lang. 3, pp. 1-68. MR1470018
- [5] V. Give’on, Algebraic Theory of m-automata, edited by Z. Kohavi and A. Paz. Academic Press, New York, Theory of Machines and Computation (1971) 275-286.
- [6] J. Engelfriet, Tree Automata and tree Grammars. DAIMI FN-10 (1975). Zbl0335.68061
- [7] K. Menger, Super Associative Systems and Logical Functions. Math. Ann. 157 (1964) 278-295. Zbl0126.03601MR177928
- [8] S. Mantaci and A. Restivo, Tree Codes and Equations, in Proc. of the 3${}^{rd}$ International Conference DLT’97, edited by S. Bozapalidis. Thessaloniki (1998) 119-132.
- [9] M. Nivat, Binary Tree Codes. Tree Automata and Languages. Elsevier Science Publishers B.V. North Holland (1992) 1-19. Zbl0798.68083MR1196729

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.