A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi; Virginia Selgas

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 2, page 291-318
  • ISSN: 0764-583X

Abstract

top
We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

How to cite

top

Meddahi, Salim, and Selgas, Virginia. "A mixed–FEM and BEM coupling for a three-dimensional eddy current problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 291-318. <http://eudml.org/doc/244741>.

@article{Meddahi2003,
abstract = {We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.},
author = {Meddahi, Salim, Selgas, Virginia},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Eddy–current; boundary element; mixed finite element; 3D-eddy current problem; finite element method; boundary element method},
language = {eng},
number = {2},
pages = {291-318},
publisher = {EDP-Sciences},
title = {A mixed–FEM and BEM coupling for a three-dimensional eddy current problem},
url = {http://eudml.org/doc/244741},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Meddahi, Salim
AU - Selgas, Virginia
TI - A mixed–FEM and BEM coupling for a three-dimensional eddy current problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 291
EP - 318
AB - We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.
LA - eng
KW - Eddy–current; boundary element; mixed finite element; 3D-eddy current problem; finite element method; boundary element method
UR - http://eudml.org/doc/244741
ER -

References

top
  1. [1] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999) 607–631. Zbl1043.78554
  2. [2] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60 (2000) 1805–1823. Zbl0978.35070
  3. [3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. Zbl0914.35094
  4. [4] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxell equations. SIAM J. Numer. Anal. 40 (2002) 1823–1849. Zbl1033.78009
  5. [5] A. Bossavit and J. Vérité, The TRIFOU code: Solving the 3-D eddy–currents problem by using H as state variable. IEEE Trans. Mag. 19 (1983) 2465–2470. 
  6. [6] A. Bossavit, Two dual formulations of the 3-D eddy-currents problem. COMPEL 4 (1985) 103–116. 
  7. [7] A. Bossavit, A rationale for edge elements in 3-D field computations. IEEE Trans. Mag. 24 (1988) 74–79. 
  8. [8] A. Bossavit, The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association. Math. Comput. Modelling 15 (1991) 33–42. Zbl0725.65112
  9. [9] A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, Berlin, Heidelberg (1993). Zbl0787.65090MR1616583
  10. [10] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, Berlin, Heidelberg, New York (1991). Zbl0788.73002MR1115205
  11. [11] A. Buffa, Hodge decompositions on the boundary of a polyhedron: the multi-connected case. Math. Models Methods Appl. Sci. 11 (2001) 1491–1504. Zbl1014.58002
  12. [12] A. Buffa, Traces for functional spaces related to Maxwell equations: an overview, in Proceedings of GAMM-Workshop, Kiel (2001). 
  13. [13] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equation. Part I: An integration by parts formula in lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. Zbl0998.46012
  14. [14] A. Buffa, M. Costabel and D. Sheen, On traces for 𝐇 ( rot , Ω ) in Lipschitz domains. University of Pavia, IAN–CNR 1185 (2000). Zbl1106.35304
  15. [15] A. Buffa, M. Costabel and Ch. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. (2001) (electronic) DOI 10.1007/s002110100372. Zbl1019.65094
  16. [16] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in The Mathematics of Finite Elements and Applications IV, Academic Press, London (1988). Zbl0682.65069MR956899
  17. [17] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5. Masson, Paris, Milan, Barcelone (1988). Zbl0749.35005MR944303
  18. [18] G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Longman (1995). Zbl0832.65126MR1379331
  19. [19] V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations: theory and algorithms. Springer, Berlin, Heidelberg, New York (1986). Zbl0413.65081MR851383
  20. [20] R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40 (2002) 41–65. Zbl1010.78011
  21. [21] C. Johnson and J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063–1079. Zbl0451.65083
  22. [22] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press (2000). Zbl0948.35001MR1742312
  23. [23] S. Meddahi, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35 (1998) 1393–1415. Zbl0912.65096
  24. [24] S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 675–696. Zbl0996.78013
  25. [25] S. Meddahi and F.J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082–2102. Zbl0981.65129
  26. [26] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 127–141. Zbl0854.65103
  27. [27] J.C. Nédélec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315–341. Zbl0419.65069
  28. [28] J.C. Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems. Springer-Verlag, New York (2001). Zbl0981.35002MR1822275
  29. [29] J.E. Roberts and J.M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 523–639. Zbl0875.65090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.