# A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi; Virginia Selgas

- Volume: 37, Issue: 2, page 291-318
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMeddahi, Salim, and Selgas, Virginia. "A mixed–FEM and BEM coupling for a three-dimensional eddy current problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 291-318. <http://eudml.org/doc/244741>.

@article{Meddahi2003,

abstract = {We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.},

author = {Meddahi, Salim, Selgas, Virginia},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {Eddy–current; boundary element; mixed finite element; 3D-eddy current problem; finite element method; boundary element method},

language = {eng},

number = {2},

pages = {291-318},

publisher = {EDP-Sciences},

title = {A mixed–FEM and BEM coupling for a three-dimensional eddy current problem},

url = {http://eudml.org/doc/244741},

volume = {37},

year = {2003},

}

TY - JOUR

AU - Meddahi, Salim

AU - Selgas, Virginia

TI - A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2003

PB - EDP-Sciences

VL - 37

IS - 2

SP - 291

EP - 318

AB - We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

LA - eng

KW - Eddy–current; boundary element; mixed finite element; 3D-eddy current problem; finite element method; boundary element method

UR - http://eudml.org/doc/244741

ER -

## References

top- [1] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999) 607–631. Zbl1043.78554
- [2] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60 (2000) 1805–1823. Zbl0978.35070
- [3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. Zbl0914.35094
- [4] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxell equations. SIAM J. Numer. Anal. 40 (2002) 1823–1849. Zbl1033.78009
- [5] A. Bossavit and J. Vérité, The TRIFOU code: Solving the 3-D eddy–currents problem by using H as state variable. IEEE Trans. Mag. 19 (1983) 2465–2470.
- [6] A. Bossavit, Two dual formulations of the 3-D eddy-currents problem. COMPEL 4 (1985) 103–116.
- [7] A. Bossavit, A rationale for edge elements in 3-D field computations. IEEE Trans. Mag. 24 (1988) 74–79.
- [8] A. Bossavit, The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association. Math. Comput. Modelling 15 (1991) 33–42. Zbl0725.65112
- [9] A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, Berlin, Heidelberg (1993). Zbl0787.65090MR1616583
- [10] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, Berlin, Heidelberg, New York (1991). Zbl0788.73002MR1115205
- [11] A. Buffa, Hodge decompositions on the boundary of a polyhedron: the multi-connected case. Math. Models Methods Appl. Sci. 11 (2001) 1491–1504. Zbl1014.58002
- [12] A. Buffa, Traces for functional spaces related to Maxwell equations: an overview, in Proceedings of GAMM-Workshop, Kiel (2001).
- [13] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equation. Part I: An integration by parts formula in lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. Zbl0998.46012
- [14] A. Buffa, M. Costabel and D. Sheen, On traces for $\mathbf{H}(rot,\Omega )$ in Lipschitz domains. University of Pavia, IAN–CNR 1185 (2000). Zbl1106.35304
- [15] A. Buffa, M. Costabel and Ch. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. (2001) (electronic) DOI 10.1007/s002110100372. Zbl1019.65094
- [16] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in The Mathematics of Finite Elements and Applications IV, Academic Press, London (1988). Zbl0682.65069MR956899
- [17] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5. Masson, Paris, Milan, Barcelone (1988). Zbl0749.35005MR944303
- [18] G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Longman (1995). Zbl0832.65126MR1379331
- [19] V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations: theory and algorithms. Springer, Berlin, Heidelberg, New York (1986). Zbl0413.65081MR851383
- [20] R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40 (2002) 41–65. Zbl1010.78011
- [21] C. Johnson and J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063–1079. Zbl0451.65083
- [22] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press (2000). Zbl0948.35001MR1742312
- [23] S. Meddahi, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35 (1998) 1393–1415. Zbl0912.65096
- [24] S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 675–696. Zbl0996.78013
- [25] S. Meddahi and F.J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082–2102. Zbl0981.65129
- [26] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 127–141. Zbl0854.65103
- [27] J.C. Nédélec, Mixed finite elements in ${\mathbb{R}}^{3}$. Numer. Math. 35 (1980) 315–341. Zbl0419.65069
- [28] J.C. Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems. Springer-Verlag, New York (2001). Zbl0981.35002MR1822275
- [29] J.E. Roberts and J.M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 523–639. Zbl0875.65090

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.