Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory
Akira Mizutani; Norikazu Saito; Takashi Suzuki
- Volume: 39, Issue: 4, page 755-780
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMizutani, Akira, Saito, Norikazu, and Suzuki, Takashi. "Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.4 (2005): 755-780. <http://eudml.org/doc/244767>.
@article{Mizutani2005,
abstract = {Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and $L^1$ contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in $L^1$ and $L^\infty $, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive $L^1$ convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.},
author = {Mizutani, Akira, Saito, Norikazu, Suzuki, Takashi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; degenerate parabolic equation; nonlinear semigroup; order-preserving; contraction properties; rate of convergence},
language = {eng},
number = {4},
pages = {755-780},
publisher = {EDP-Sciences},
title = {Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory},
url = {http://eudml.org/doc/244767},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Mizutani, Akira
AU - Saito, Norikazu
AU - Suzuki, Takashi
TI - Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 755
EP - 780
AB - Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and $L^1$ contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in $L^1$ and $L^\infty $, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive $L^1$ convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
LA - eng
KW - finite element method; degenerate parabolic equation; nonlinear semigroup; order-preserving; contraction properties; rate of convergence
UR - http://eudml.org/doc/244767
ER -
References
top- [1] R.A. Adams, Sobolev Spaces. Academic Press, New York, London (1975). Zbl0314.46030MR450957
- [2] P. Bénilan, M.G. Crandall and P. Sacks, Some existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988) 203–224. Zbl0652.35043
- [3] A.E. Berger, H. Brezis and J.C.W Rogers, A numerical method for solving the problem . RAIRO Anal. Numer. 13 (1979) 297–312. Zbl0426.65052
- [4] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1994). Zbl0804.65101MR1278258
- [5] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9 (1972) 63–74. Zbl0231.47036
- [6] H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in . J. Math. Soc. Japan 25 (1973) 565–590. Zbl0278.35041
- [7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [8] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17–351, Elsevier Science Publishers B.V., Amsterdam (1991). Zbl0875.65086
- [9] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17–31. Zbl0251.65069
- [10] J.F. Ciavaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis. SIAM J. Numer. Anal. 12 (1975) 464–487. Zbl0272.65101
- [11] B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231–251. Zbl0921.35017
- [12] M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–293. Zbl0226.47038
- [13] C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61–71. Zbl0638.65088
- [14] C.M. Elliott and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math. 59 (1982). Zbl0476.35080MR650455
- [15] A. Friedman, Variational Principles and Free-Boundary Problems. Wiley, New York (1982). Zbl0564.49002MR679313
- [16] H. Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91–106. Zbl0373.65047
- [17] H. Fujita, N. Saito and T. Suzuki, Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001). Zbl0976.65098MR1854280
- [18] B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976) 351–364. Zbl0356.35049
- [19] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
- [20] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605–627. Zbl0837.65103
- [21] J. Kačur, A. Handlovicová and M. Kacurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 1703-1722 (1993). Zbl0792.65070MR1249039
- [22] T. Kato, Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135–148. Zbl0246.35025
- [23] M.N. Le Roux, Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl. 137 (1989) 354–370. Zbl0693.65085
- [24] M.N. Le Roux and P.E. Mainge, Numerical solution of a fast diffusion equation. Math. Comp. 68 (1999) 461–485. Zbl1020.65053
- [25] P. Lesaint and J. Pousin, Error estimates for a nonlinear degenerate parabolic equation. Math. Comp. 59 (1992) 339–358. Zbl0767.65071
- [26] E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655–678. Zbl0635.65123
- [27] E. Magenes, C. Verdi and A. Visintin, Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24–33. Zbl0562.35089
- [28] E. Magenes, C. Verdi, and A. Visintin, Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal. 26 (1989) 1425–1438. Zbl0738.65092
- [29] I. Miyadera, Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992). Zbl0766.47039
- [30] R.H. Nochetto, Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo 22 (1985) 457–499. Zbl0606.65084
- [31] P.H. Nochetto, and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784–814. Zbl0655.65131
- [32] L.A. Peletier, The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229–241. Zbl0497.76083
- [33] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximation. Math. Comp. 38 (1982) 437–445. Zbl0483.65007
- [34] M. Rose, Numerical methods for flows through porous media, I. Math. Comp. 40 (1983) 435–467. Zbl0518.76078
- [35] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. Zbl0696.65007
- [36] R.E. White, An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19 (1982) 1129–1157. Zbl0501.65058
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.