Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory

Akira Mizutani; Norikazu Saito; Takashi Suzuki

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 4, page 755-780
  • ISSN: 0764-583X

Abstract

top
Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L 1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L 1 and L , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L 1 convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.

How to cite

top

Mizutani, Akira, Saito, Norikazu, and Suzuki, Takashi. "Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.4 (2005): 755-780. <http://eudml.org/doc/244767>.

@article{Mizutani2005,
abstract = {Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and $L^1$ contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in $L^1$ and $L^\infty $, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive $L^1$ convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.},
author = {Mizutani, Akira, Saito, Norikazu, Suzuki, Takashi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; degenerate parabolic equation; nonlinear semigroup; order-preserving; contraction properties; rate of convergence},
language = {eng},
number = {4},
pages = {755-780},
publisher = {EDP-Sciences},
title = {Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory},
url = {http://eudml.org/doc/244767},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Mizutani, Akira
AU - Saito, Norikazu
AU - Suzuki, Takashi
TI - Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 755
EP - 780
AB - Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and $L^1$ contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in $L^1$ and $L^\infty $, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive $L^1$ convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
LA - eng
KW - finite element method; degenerate parabolic equation; nonlinear semigroup; order-preserving; contraction properties; rate of convergence
UR - http://eudml.org/doc/244767
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York, London (1975). Zbl0314.46030MR450957
  2. [2] P. Bénilan, M.G. Crandall and P. Sacks, Some L 1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988) 203–224. Zbl0652.35043
  3. [3] A.E. Berger, H. Brezis and J.C.W Rogers, A numerical method for solving the problem u t - Δ f ( u ) = 0 . RAIRO Anal. Numer. 13 (1979) 297–312. Zbl0426.65052
  4. [4] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1994). Zbl0804.65101MR1278258
  5. [5] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9 (1972) 63–74. Zbl0231.47036
  6. [6] H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L 1 . J. Math. Soc. Japan 25 (1973) 565–590. Zbl0278.35041
  7. [7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
  8. [8] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17–351, Elsevier Science Publishers B.V., Amsterdam (1991). Zbl0875.65086
  9. [9] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17–31. Zbl0251.65069
  10. [10] J.F. Ciavaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis. SIAM J. Numer. Anal. 12 (1975) 464–487. Zbl0272.65101
  11. [11] B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231–251. Zbl0921.35017
  12. [12] M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–293. Zbl0226.47038
  13. [13] C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61–71. Zbl0638.65088
  14. [14] C.M. Elliott and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math. 59 (1982). Zbl0476.35080MR650455
  15. [15] A. Friedman, Variational Principles and Free-Boundary Problems. Wiley, New York (1982). Zbl0564.49002MR679313
  16. [16] H. Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91–106. Zbl0373.65047
  17. [17] H. Fujita, N. Saito and T. Suzuki, Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001). Zbl0976.65098MR1854280
  18. [18] B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976) 351–364. Zbl0356.35049
  19. [19] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
  20. [20] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605–627. Zbl0837.65103
  21. [21] J. Kačur, A. Handlovicová and M. Kacurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 1703-1722 (1993). Zbl0792.65070MR1249039
  22. [22] T. Kato, Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135–148. Zbl0246.35025
  23. [23] M.N. Le Roux, Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl. 137 (1989) 354–370. Zbl0693.65085
  24. [24] M.N. Le Roux and P.E. Mainge, Numerical solution of a fast diffusion equation. Math. Comp. 68 (1999) 461–485. Zbl1020.65053
  25. [25] P. Lesaint and J. Pousin, Error estimates for a nonlinear degenerate parabolic equation. Math. Comp. 59 (1992) 339–358. Zbl0767.65071
  26. [26] E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655–678. Zbl0635.65123
  27. [27] E. Magenes, C. Verdi and A. Visintin, Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24–33. Zbl0562.35089
  28. [28] E. Magenes, C. Verdi, and A. Visintin, Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal. 26 (1989) 1425–1438. Zbl0738.65092
  29. [29] I. Miyadera, Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992). Zbl0766.47039
  30. [30] R.H. Nochetto, Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo 22 (1985) 457–499. Zbl0606.65084
  31. [31] P.H. Nochetto, and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784–814. Zbl0655.65131
  32. [32] L.A. Peletier, The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229–241. Zbl0497.76083
  33. [33] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximation. Math. Comp. 38 (1982) 437–445. Zbl0483.65007
  34. [34] M. Rose, Numerical methods for flows through porous media, I. Math. Comp. 40 (1983) 435–467. Zbl0518.76078
  35. [35] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. Zbl0696.65007
  36. [36] R.E. White, An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19 (1982) 1129–1157. Zbl0501.65058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.