Energy error estimates for a linear scheme to approximate nonlinear parabolic problems
E. Magenes; R. H. Nochetto; C. Verdi
- Volume: 21, Issue: 4, page 655-678
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMagenes, E., Nochetto, R. H., and Verdi, C.. "Energy error estimates for a linear scheme to approximate nonlinear parabolic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.4 (1987): 655-678. <http://eudml.org/doc/193519>.
@article{Magenes1987,
author = {Magenes, E., Nochetto, R. H., Verdi, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semidiscretization method; Chernoff's formula; nonlinear semigroups of contractions; energy type error estimates; degenerate and non-degenerate equations; Stefan problem; porous medium equations},
language = {eng},
number = {4},
pages = {655-678},
publisher = {Dunod},
title = {Energy error estimates for a linear scheme to approximate nonlinear parabolic problems},
url = {http://eudml.org/doc/193519},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Magenes, E.
AU - Nochetto, R. H.
AU - Verdi, C.
TI - Energy error estimates for a linear scheme to approximate nonlinear parabolic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 4
SP - 655
EP - 678
LA - eng
KW - semidiscretization method; Chernoff's formula; nonlinear semigroups of contractions; energy type error estimates; degenerate and non-degenerate equations; Stefan problem; porous medium equations
UR - http://eudml.org/doc/193519
ER -
References
top- [1] Ph. BENILAN, Solutions intégrales d'équations d'évolution dans un espace de Banach, C. R. Acad. Sci. Paris, A-274 (1972), 47-50. Zbl0246.47068MR300164
- [2] A. E. BERGER, H BREZIS & J. C. W. ROGERS, A numerical method for solving the problem R.A.I.R.O. Anal. Numér., 13 (1979), 297-312. Zbl0426.65052MR555381
- [3] A. BOSSAVIT, A. DAMLAMIAN & M. FREMOND Eds., Free boundary problems: applications and theory, vol. III, Research Notes in Math. 120, Pitman, Boston (1985). Zbl0578.35003MR863154
- [4] H. BREZIS, On some degenerate non-linear parabolic equations, in Non-linear functional analysis (F. E. Browder Ed.), A.M.S. XVIII 1 (1970), 28-38. Zbl0231.47034MR273468
- [5] H. BREZIS & A. PAZY, Convergence and approximation of semigroups of non-linear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63-74. Zbl0231.47036MR293452
- [6] J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM J. Numer. Anal., 12 (1975), 464-487. Zbl0272.65101MR391741
- [7] M. G. CRANDALL& T. M. LIGGETT, Generation of semi-groups of non-linear transformations on general Banach spaces, Amer J. Math., 93 (1971), 265-298. Zbl0226.47038MR287357
- [8] J. DOUGLAS Jr.& T. DUPONT, Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7 (1970), 575-626. Zbl0224.35048MR277126
- [9] J. DOUGLAS Jr. & T. DUPONT, Alternating-direction Galerkin methods on rectangles, in Numerical solutions of partial differential equations, vol. II (B. Hubbard Ed.), Academic Press, New York (1971), 133-214. Zbl0239.65088MR273830
- [10] J. DOUGLAS Jr., T. DUPONT & R. E. EWING, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal., 16 (1979), 503-522. Zbl0411.65064MR530483
- [11] C. M. ELLIOTT, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987), 61-71. Zbl0638.65088MR967835
- [12] R. E. EWING, Efficient multistep procedures for nonlinear parabolic problems with nonlinear Neumann boundary conditions, Calcolo, 19 (1982), 231-252. Zbl0522.65072MR695388
- [13] J. W. JEROME, Approximation of nonlinear evolution systems, Academic Press, New York (1983). Zbl0512.35001MR690582
- [14] J. W. JEROME & M. E. ROSE, Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39 (1982), 377-414. Zbl0505.65060MR669635
- [15] J. L. LIONS & E. MAGENES, Non-homogeneous boundary value problems and applications, vol. I, Springer-Verlag, Berlin (1972). Zbl0223.35039MR350177
- [16] M. LUSKIN, A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions, SIAM J. Numer. AnaL, 16 (1979), 284-299. Zbl0405.65059MR526490
- [17] E. MAGENES, Problemi di Stefan bifase in piu variabili spaziali, V S.A.F.A., Catania, Le Matematiche, XXXVI (1981), 65-108. Zbl0545.35096
- [18] E. MAGENES & C. VERDI, On the semigroup approach to the two-phase Stefan problem with nonlinear flux conditions, in [3], 28-39. Zbl0593.35092MR863159
- [19] G. H. MEYER, Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), 522-538. Zbl0256.65054MR331807
- [20] R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, I: linear boundary conditions, Calcolo, 22 (1985), 457-499. Zbl0606.65084MR859087
- [21] R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, II: nonlinear flux conditions, Calcolo, 22 (1985), 501-534. Zbl0606.65085MR859088
- [22] R. H. NOCHETTO, Error estimates for multidimensional Stefan problems with general boundary conditions, in [3], 50-60. Zbl0593.35094MR863161
- [23] R. H. NOCHETTO, Error estimates for multidimensional singular parabolic problems, Japan J. Appl. Math., 4 (1987), 111-138. Zbl0657.65132MR899207
- [24] R. H. NOCHETTO& C. VERDI, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., to appear. Zbl0655.65131MR954786
- [25] J. C. W. ROGERS, A. E. BERGER & M. CIMENT, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16 (1979), 563-587. Zbl0418.65051MR537272
- [26] M. E. ROSE, Numerical methods for flows through porous media I, Math. Comp., 40 (1983), 435-467. Zbl0518.76078MR689465
- [27] V. THOMEE, Galerkin finite element methods for parabolic problems, Lecture Notes in Math. 1054, Springer-Verlag, Berlin (1984). Zbl0528.65052MR744045
- [28] C. VERDI, On the numerical approach to a two-phase Stefan problem with nonlinear flux, Calcolo, 22 (1985), 351-381. Zbl0612.65084MR860658
- [29] C. VERDI & A. VISINTIN, Error estimates for a semi-explicit numerical scheme for Stefan-type problems, submitted to Numer. Math. Zbl0617.65125MR923709
- [30] A. VISINTIN, Stefan problem with phase relaxation, IMA J. Appl. Math., 34 (1985), 225-245. Zbl0585.35053MR804824
- [31] M. F. WHEELER, A priori -error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723-759. Zbl0232.35060MR351124
- [32] R. E. WHITE, An enthalpy formulation of the Stefan problem, SIAM J. Numer. Anal., 19 (1982), 1129-1157. Zbl0501.65058MR679656
Citations in EuDML Documents
top- C. Verdi, A. Visintin, Numerical approximation of the Preisach model for hysteresis
- Xun Jiang, Ricardo H. Nochetto, Optimal error estimates for semidiscrete phase relaxation models
- G. Amiez, P.-A. Gremaud, Error estimates for Euler forward scheme related to two-phase Stefan problems
- Akira Mizutani, Norikazu Saito, Takashi Suzuki, Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory
- Molati, Motlatsi, Murakawa, Hideki, An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems
- Hideki Murakawa, A linear scheme to approximate nonlinear cross-diffusion systems
- Éric Boillat, An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
- Xun Jiang, A linear extrapolation method for a general phase relaxation problem
- Ricardo H. Nochetto, Alfred Schmidt, Claudio Verdi, Adapting meshes and time-steps for phase change problems
- Éric Boillat, An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.