Complexity of infinite words associated with beta-expansions
Christiane Frougny[1]; Zuzana Masáková; Edita Pelantová
- [1] Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2004)
- Volume: 38, Issue: 2, page 163-185
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFrougny, Christiane, Masáková, Zuzana, and Pelantová, Edita. "Complexity of infinite words associated with beta-expansions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 38.2 (2004): 163-185. <http://eudml.org/doc/244788>.
@article{Frougny2004,
abstract = {We study the complexity of the infinite word $u_\beta $ associated with the Rényi expansion of $1$ in an irrational base $\beta >1$. When $\beta $ is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity $\mathbb \{C\}(n)=n+1$. For $\beta $ such that $d_\beta (1)=t_1t_2\cdots t_\{m\}$ is finite we provide a simple description of the structure of special factors of the word $u_\beta $. When $t_m=1$ we show that $\mathbb \{C\}(n)=(m-1)n+1$. In the cases when $t_1=t_2=\cdots =t_\{m-1\}$ or $t_1>\max \lbrace t_2,\dots ,t_\{m-1\}\rbrace $ we show that the first difference of the complexity function $\mathbb \{C\}(n+1)-\mathbb \{C\}(n)$ takes value in $\lbrace m-1,m\rbrace $ for every $n$, and consequently we determine the complexity of $u_\beta $. We show that $u_\beta $ is an Arnoux-Rauzy sequence if and only if $d_\beta (1)=t\,t\cdots \,t\,1$. On the example of $\beta =1+2\cos (2\pi /7)$, solution of $X^3=2X^2+X-1$, we illustrate that the structure of special factors is more complicated for $d_\beta (1)$ infinite eventually periodic. The complexity for this word is equal to $2n+1$.},
affiliation = {Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8},
author = {Frougny, Christiane, Masáková, Zuzana, Pelantová, Edita},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {beta-expansions; complexity of infinite words},
language = {eng},
number = {2},
pages = {163-185},
publisher = {EDP-Sciences},
title = {Complexity of infinite words associated with beta-expansions},
url = {http://eudml.org/doc/244788},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Frougny, Christiane
AU - Masáková, Zuzana
AU - Pelantová, Edita
TI - Complexity of infinite words associated with beta-expansions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 2
SP - 163
EP - 185
AB - We study the complexity of the infinite word $u_\beta $ associated with the Rényi expansion of $1$ in an irrational base $\beta >1$. When $\beta $ is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity $\mathbb {C}(n)=n+1$. For $\beta $ such that $d_\beta (1)=t_1t_2\cdots t_{m}$ is finite we provide a simple description of the structure of special factors of the word $u_\beta $. When $t_m=1$ we show that $\mathbb {C}(n)=(m-1)n+1$. In the cases when $t_1=t_2=\cdots =t_{m-1}$ or $t_1>\max \lbrace t_2,\dots ,t_{m-1}\rbrace $ we show that the first difference of the complexity function $\mathbb {C}(n+1)-\mathbb {C}(n)$ takes value in $\lbrace m-1,m\rbrace $ for every $n$, and consequently we determine the complexity of $u_\beta $. We show that $u_\beta $ is an Arnoux-Rauzy sequence if and only if $d_\beta (1)=t\,t\cdots \,t\,1$. On the example of $\beta =1+2\cos (2\pi /7)$, solution of $X^3=2X^2+X-1$, we illustrate that the structure of special factors is more complicated for $d_\beta (1)$ infinite eventually periodic. The complexity for this word is equal to $2n+1$.
LA - eng
KW - beta-expansions; complexity of infinite words
UR - http://eudml.org/doc/244788
ER -
References
top- [1] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 133-143. Zbl0803.68094MR1318964
- [2] P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. Zbl0789.28011MR1116845
- [3] J. Berstel, Recent results on extensions of Sturmian words. J. Algebra Comput. 12 (2003) 371-385. Zbl1007.68141MR1902372
- [4] A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285A (1977) 419-421. Zbl0362.10040MR447134
- [5] A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. Zbl0695.10005
- [6] J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. Zbl0921.68065MR1440670
- [7] J. Cassaigne, S. Ferenczi and L. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. Zbl1004.37008MR1799745
- [8] S. Fabre, Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. Zbl0872.11017MR1311222
- [9] Ch. Frougny, J.-P. Gazeau and R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers. Theoret. Comput. Sci. 303 (2003) 491-516. Zbl1036.11034MR1990778
- [10] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). Zbl1001.68093MR1905123
- [11] W. Parry, On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. Zbl0099.28103MR142719
- [12] J. Patera, Statistics of substitution sequences. On-line computer program, available at http://kmlinux.fjfi.cvut.cz/~patera/SubstWords.cgi
- [13] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. Zbl0079.08901MR97374
- [14] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. Zbl0494.10040MR576976
- [15] W.P. Thurston, Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
- [16] O. Turek, Complexity and balances of the infinite word of -integers for , in Proc. of Words’03, Turku. TUCS Publication 27 (2003) 138-148. Zbl1040.68090
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.