Imbalances in Arnoux-Rauzy sequences
Julien Cassaigne; Sébastien Ferenczi; Luca Q. Zamboni
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 4, page 1265-1276
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCassaigne, Julien, Ferenczi, Sébastien, and Zamboni, Luca Q.. "Imbalances in Arnoux-Rauzy sequences." Annales de l'institut Fourier 50.4 (2000): 1265-1276. <http://eudml.org/doc/75456>.
@article{Cassaigne2000,
abstract = {In a 1982 paper Rauzy showed that the subshift $(X,T)$ generated by the morphism $1\mapsto 12$, $2\mapsto 13$ and $3\mapsto 1$ is a natural coding of a rotation on the two-dimensional torus $\{\Bbb T\}^2$, i.e., is measure-theoretically conjugate to an exchange of three fractal domains on a compact set in $\{\Bbb R\}^2,$ each domain being translated by the same vector modulo a lattice. It was believed more generally that each sequence of block complexity $2n+1$ satisfying a combinatorial criterion known as the $\star $ condition of Arnoux and Rauzy codes the orbit of a point under a rotation on $\{\Bbb T\}^2$. In this note we exhibit a counterexample to this conjecture. We first build an Arnoux-Rauzy sequence $\omega _* $ which is unbalanced in the following sense: for each $N>0$ there exist two factors of $\omega _* $ of equal length, with one having at least $N$ more occurrences of a given letter than the other. We then invoke a result due to Rauzy on bounded remainder sets to establish the existence of an Arnoux-Rauzy sequence which is not a natural coding of a rotation on $\{\Bbb T\}^2$.},
author = {Cassaigne, Julien, Ferenczi, Sébastien, Zamboni, Luca Q.},
journal = {Annales de l'institut Fourier},
keywords = {infinite words; codings of rotations; return times; bounded reaminder sets; balanced sequences; Arnoux-Rauzy sequences; Sturmian sequences},
language = {eng},
number = {4},
pages = {1265-1276},
publisher = {Association des Annales de l'Institut Fourier},
title = {Imbalances in Arnoux-Rauzy sequences},
url = {http://eudml.org/doc/75456},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Cassaigne, Julien
AU - Ferenczi, Sébastien
AU - Zamboni, Luca Q.
TI - Imbalances in Arnoux-Rauzy sequences
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1265
EP - 1276
AB - In a 1982 paper Rauzy showed that the subshift $(X,T)$ generated by the morphism $1\mapsto 12$, $2\mapsto 13$ and $3\mapsto 1$ is a natural coding of a rotation on the two-dimensional torus ${\Bbb T}^2$, i.e., is measure-theoretically conjugate to an exchange of three fractal domains on a compact set in ${\Bbb R}^2,$ each domain being translated by the same vector modulo a lattice. It was believed more generally that each sequence of block complexity $2n+1$ satisfying a combinatorial criterion known as the $\star $ condition of Arnoux and Rauzy codes the orbit of a point under a rotation on ${\Bbb T}^2$. In this note we exhibit a counterexample to this conjecture. We first build an Arnoux-Rauzy sequence $\omega _* $ which is unbalanced in the following sense: for each $N>0$ there exist two factors of $\omega _* $ of equal length, with one having at least $N$ more occurrences of a given letter than the other. We then invoke a result due to Rauzy on bounded remainder sets to establish the existence of an Arnoux-Rauzy sequence which is not a natural coding of a rotation on ${\Bbb T}^2$.
LA - eng
KW - infinite words; codings of rotations; return times; bounded reaminder sets; balanced sequences; Arnoux-Rauzy sequences; Sturmian sequences
UR - http://eudml.org/doc/75456
ER -
References
top- [1] P. ARNOUX, Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore, Bull. Soc. Math. France, 116 (1988), 489-500. Zbl0703.58045MR91a:58138
- [2] P. ARNOUX, V. BERHÉ, S. ITO, Discrete planes, ℤ2-actions, Jacobi-Perron algorithm and substitutions, preprint (1999).
- [3] P. ARNOUX, S. ITO, Pisot substitutions and Rauzy fractals, preprint 98-18, Institut de Mathématiques de Luminy, Marseille (1998). Zbl1007.37001
- [4] P. ARNOUX, G. RAUZY, Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France, 119 (1991), 199-215. Zbl0789.28011MR92k:58072
- [5] V. BERTHÉ, L. VUILLON, Tilings and rotations: a two-dimensional generalization of Sturmian sequences, preprint 97-19, Institut de Mathématiques de Luminy, Marseille (1997). Zbl0970.68124
- [6] V. CANTERINI, A. SIEGEL, Geometric representations of Pisot substitutions, preprint (1999). Zbl1142.37302
- [7] M.G. CASTELLI, F. MIGNOSI, A. RESTIVO, Fine and Wilf's theorem for three periods and a generalization of Sturmian words, Theoret. Comp. Sci., 218 (1999), 83-94. Zbl0916.68114MR2000c:68110
- [8] R. V. CHACON, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc., 22 (1969), 559-562. Zbl0186.37203MR40 #297
- [9] N. CHEKHOVA, Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une question d'Hedlund et Morse, preprint (1999).
- [10] N. CHEKHOVA, Algorithme d'approximation et propriétés ergodiques des suites d'Arnoux-Rauzy, preprint (1999).
- [11] N. CHEKHOVA, P. HUBERT, A. MESSAOUDI, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, preprint 98-24, Institut de Mathématiques de Luminy, Marseille (1998).
- [12] X. DROUBAY, J. JUSTIN, G. PIRILLO, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comp. Sci., to appear. Zbl0981.68126
- [13] S. FERENCZI, Bounded remainder sets, Acta Arith., 61 (1992), 319-326. Zbl0774.11037MR93f:11059
- [14] S. FERENCZI, Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1, Bull. Soc. Math. France, 123 (1995), 271-292. Zbl0855.28008MR96m:28018
- [15] S. FERENCZI, C. HOLTON, L.Q. ZAMBONI, Structure of three interval exchange transformations I: An arithmetic study, preprint 199/2000, Université François Rabelais, Tours (2000). Zbl1029.11036
- [16] S. FERENCZI, C. HOLTON, L.Q. ZAMBONI, Structure of three interval exchange transformations II: A combinatorial study; ergodic and spectral properties, preprint (2000). Zbl1029.11036
- [17] S. FERENCZI, C. MAUDUIT, Transcendence of numbers with a low complexity expansion, J. Number Theory, 67 (1997), 146-161. Zbl0895.11029MR98m:11079
- [18] S. ITO, M. KIMURA, On Rauzy fractal, Japan J. Indust. Appl. Math., 8 (1991), 461-486. Zbl0734.28010MR93d:11084
- [19] H. KESTEN, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith., 12 (1966), 193-212. Zbl0144.28902MR35 #155
- [20] M. LOTHAIRE, Algebraic Combinatorics on Words, Chapter 2: Sturmian words, by J. Berstel, P. Séébold, to appear. Zbl1001.68093
- [21] A. MESSAOUDI, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Th. Nombres de Bordeaux, 10 (1998), 135-162. Zbl0918.11048MR2002c:11091
- [22] A. MESSAOUDI, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith., to appear. Zbl0968.28005
- [23] M. MORSE, G.A. HEDLUND, Symbolic dynamics, Amer. J. Math., 60 (1938), 815-866. Zbl0019.33502JFM64.0798.04
- [24] M. MORSE, G.A. HEDLUND, Symbolic dynamics II: Sturmian sequences, Amer. J. Math., 62 (1940), 1-42. Zbl0022.34003MR1,123dJFM66.0188.03
- [25] G. RAUZY, Une généralisation du développement en fraction continue, Séminaire Delange - Pisot - Poitou, 1976-1977, Paris, exposé 15, 15-01-15-16. Zbl0369.28015MR83e:10077
- [26] G. RAUZY, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. Zbl0414.28018MR82m:10076
- [27] G. RAUZY, Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (1982), 147-178. Zbl0522.10032MR84h:10074
- [28] G. RAUZY, Ensembles à restes bornés, Séminaire de Théorie des Nombres de Bordeaux, 1983-1984, exposé 24, 24-01-24-12. Zbl0547.10044MR86g:28024
- [29] R. RISLEY, L.Q. ZAMBONI, A generalization of Sturmian sequences; combinatorial structure and transcendence, Acta Arith., to appear. Zbl0953.11007
- [30] N. WOZNY, L.Q. ZAMBONI, Frequencies of factors in Arnoux-Rauzy sequences, in course of acceptation by Acta Arith. Zbl0973.11030
- [31] L.Q. ZAMBONI, Une généralisation du théorème de Lagrange sur le développement en fraction continue, C.R. Acad. Sci. Paris, Série I, 327 (1998), 527-530. Zbl1039.11500MR2000c:11016
Citations in EuDML Documents
top- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Complexity of infinite words associated with beta-expansions
- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Complexity of infinite words associated with beta-expansions
- Julien Cassaigne, Sébastien Ferenczi, Ali Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences
- Ondřej Turek, Balances and Abelian Complexity of a Certain Class of Infinite Ternary Words
- Boris Adamczewski, Codages de rotations et phénomènes d'autosimilarité
- Valérie Berthé, Timo Jolivet, Anne Siegel, Connectedness of fractals associated with Arnoux–Rauzy substitutions
- Julien Bernat, Study of irreducible balanced pairs for substitutive languages
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three interval exchange transformations I: an arithmetic study
- L'ubomíra Balková, Edita Pelantová, Štěpán Starosta, Sturmian jungle (or garden?) on multiliteral alphabets
- L'ubomíra Balková, Edita Pelantová, Štěpán Starosta, Sturmian jungle (or garden?) on multiliteral alphabets
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.