Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering

Xavier Antoine; Hélène Barucq

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 5, page 1041-1059
  • ISSN: 0764-583X

Abstract

top
This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted and scattered waves. Theoretical aspects of the problem and numerical experiments are reported to analyze the efficiency of the method and precise its validity domain.

How to cite

top

Antoine, Xavier, and Barucq, Hélène. "Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.5 (2005): 1041-1059. <http://eudml.org/doc/244799>.

@article{Antoine2005,
abstract = {This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted and scattered waves. Theoretical aspects of the problem and numerical experiments are reported to analyze the efficiency of the method and precise its validity domain.},
author = {Antoine, Xavier, Barucq, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Helmholtz equation; acoustics; integral equations; generalized impedance boundary conditions; existence and uniqueness results; existence and uniqueness results.},
language = {eng},
number = {5},
pages = {1041-1059},
publisher = {EDP-Sciences},
title = {Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering},
url = {http://eudml.org/doc/244799},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Antoine, Xavier
AU - Barucq, Hélène
TI - Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 5
SP - 1041
EP - 1059
AB - This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted and scattered waves. Theoretical aspects of the problem and numerical experiments are reported to analyze the efficiency of the method and precise its validity domain.
LA - eng
KW - Helmholtz equation; acoustics; integral equations; generalized impedance boundary conditions; existence and uniqueness results; existence and uniqueness results.
UR - http://eudml.org/doc/244799
ER -

References

top
  1. [1] X. Antoine, Conditions de Radiation sur le Bord. Ph.D. Thesis, No. d’ordre 395, Université de Pau et des Pays de l’Adour, France (1997). 
  2. [2] X. Antoine, Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 66 (2001) 83. Zbl1001.78008MR1818647
  3. [3] X. Antoine and H. Barucq, On the construction of approximate boundary conditions for solving the interior problem of the acoustic scattering transmission problem, in Domain Decomposition Methods in Science and Engineering. R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund, J. Xu, Eds., Springer Series. Lect. Notes Comput. Sci. Engrg. 40 (2004) 133–140. Zbl1152.76466
  4. [4] X. Antoine, H. Barucq and L. Vernhet, Approximate solution for the scattering of a time-harmonic wave by a homogeneous dissipative obstacle. Internal Report MIP 00-20, Laboratoire MIP, Toulouse (2000). Zbl0978.76081
  5. [5] X. Antoine, H. Barucq and L. Vernhet, High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26 (2001) 257. Zbl0986.76080MR1844544
  6. [6] X. Antoine, A. Bendali and M. Darbas, Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 1310–1331. Zbl1210.65193
  7. [7] X. Antoine, A. Bendali and M. Darbas, Analytic preconditioners for the boundary integral solution of the scattering of acoustic waves by open surfaces. J. Comput. Acoustics, Special Issue on High Performance Scientific Computing in Acoustics 13 (2005). To appear. Zbl1189.76356MR2174403
  8. [8] A. Bendali, Approximation par éléments Finis de surface de problèmes de diffraction des ondes électromagnétiques. Thèse de Doctorat, Université Paris VI (1984). 
  9. [9] A. Bendali and M. Souilah, Consistency estimates for a double-layer potential and application to the numerical analysis of the boundary-element approximation of acoustic scattering by a penetrable object. Math. Comp. 62 (1994) 65. Zbl0806.65113MR1201067
  10. [10] B. Carpinteri, I.S. Duff and L. Giraud, Experiments with sparse preconditioning of dense problems of electromagnetic applications. Technical Report TR/PA/00/04, CERFACS, France (2000). 
  11. [11] B. Carpinteri, I.S. Duff and L. Giraud, Sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl. 7 (2000) 667. Zbl1051.65050MR1802365
  12. [12] J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations. North-Holland, Amsterdam/New-York (1982). Zbl0487.35002MR678605
  13. [13] K. Chen and P.J. Harris, Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475. Zbl0979.65107MR1821449
  14. [14] S.H. Christiansen and J.C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 617. Zbl0952.65096
  15. [15] P.G. Ciarlet, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I). P.G. Ciarlet and J.-L. Lions, Eds., Elsevier Science Publisher, North-Holland, Amsterdam (1991). Zbl0712.65091MR1115235
  16. [16] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Krieger Publishing Company (1992). Zbl0522.35001
  17. [17] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613. Zbl0644.35037MR937473
  18. [18] M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 136 (1985) 367. Zbl0597.35021MR782799
  19. [19] E. Darrigrand, Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation. J. Comput. Phys. 181 (2002) 126. Zbl1008.65088MR1925979
  20. [20] E. Darve, The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98. Zbl0974.65033MR1770344
  21. [21] E. Darve, The fast multipole method: numerical implementation. J. Comput. Phys. 160 (2000) 195. Zbl0974.78012MR1756765
  22. [22] R. Djellouli, C. Farhat, A. Macedo and R. Tezaur, Three-dimensional finite element calculations in acoustic solution scattering using arbitrarily convex artificial boundaries. Internat. J. Numer. Methods Engrg. 53 (2002) 1461. Zbl0996.76058
  23. [23] D.S. Jones, An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163. Zbl0758.35074MR1159837
  24. [24] R.E. Kleinman and P.A. Martin, On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48 (1988) 307. Zbl0663.76095MR933037
  25. [25] G.A. Kriegsmann, A. Taflove and K.R. Umashankar, A new formulation of electromagnetic wave scattering using the on-surface radiation condition approach. IEEE Trans. Antennas Prop. 35 (1987) 153. Zbl0947.78571MR876384
  26. [26] D. Levadoux, Étude d’une équation intégrale adaptée à la résolution haute-fréquence de l’équation d’Helmholtz. Thèse de Doctorat, Université Paris VI (2001). 
  27. [27] D. Levadoux and B. Michielsen, Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes. ESAIM: M2AN 38 (2004) 157–175. Zbl1130.35326
  28. [28] J.C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems. Springer-Verlag, New York. Appl. Math. Sci. 144 (2001). Zbl0981.35002MR1822275
  29. [29] F. Rellich, Über das asymptotische verhalten der lösungen von Δ u + λ u = 0 , in unendlichen gebieten, Jahresber. Deutch. Math. Verein 53 (1943) 57. Zbl0028.16401MR17816
  30. [30] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414. Zbl0686.65079MR1036660
  31. [31] S.M. Rytov, Calcul du skin-effect par la méthode des perturbations. J. Phys. USSR 2 (1940) 233. Zbl66.1129.02JFM66.1129.02
  32. [32] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996). Zbl1031.65047
  33. [33] T.B.A. Senior, Impedance boundary conditions for imperfectly conducting surface. Appl. Sci. Res. B. 8 (1960) 418. Zbl0096.43001MR135815
  34. [34] T.B.A. Senior, Approximate boundary conditions for homogeneous dielectric bodies. J. Electromagnet. Wave 9 (1995) 1227. 
  35. [35] T.B.A. Senior, Generalized boundary conditions for scalar fields. J. Acoust. Soc. Amer. 97 (1995) 3473. 
  36. [36] T.B.A. Senior and J.L. Volakis, Approximate Boundary Conditions in Electromagnetics. IEE Electromagnetic Waves, Serie 41, London (1995). Zbl0828.73001
  37. [37] T.B.A. Senior, J.L. Volakis and S.R. Legault, Higher order impedance and absorbing boundary conditions. IEEE Trans. Antennas Prop. 45 (1997) 107. 
  38. [38] O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191. Zbl0922.65076MR1662766
  39. [39] L. Vernhet, Approximation par éléments finis de frontière de problèmes de diffraction d’ondes avec condition d’impédance. Ph.D. Thesis, Université de Pau et des Pays de l’Adour, No. 400, France (1997). 
  40. [40] L. Vernhet, Boundary element solution of a scattering problem involving a generalized impedance boundary condition. Math. Methods Appl. Sci. 22 (1999) 587. Zbl0923.35114MR1682913
  41. [41] D.S. Wang, Limits and validity of the impedance boundary condition on penetrable surfaces. IEEE. Trans. Antennas Prop. 35 (1987) 453. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.