Removing holes in topological shape optimization
Maatoug Hassine; Philippe Guillaume
ESAIM: Control, Optimisation and Calculus of Variations (2008)
- Volume: 14, Issue: 1, page 160-191
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Abdelwahed, M. Amara, F. El Dabaghi and M. Hassine, A numerical modelling of a two phase flow for water eutrophication problems. ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelone, 11–14 September (2000).
- [2] G. Allaire and A. Henrot, On some recent advances in shape optimization. C. R. Acad. Sci. Paris, Ser. II B 329 (2001) 383–396. Zbl0986.49023
- [3] G. Allaire and R. Kohn, Optimal bounds on the effective behavior of a mixture of two well-orded elastic materials. Quart. Appl. Math. 51 (1996) 643–674. Zbl0805.73043MR1247433
- [4] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. Zbl1136.74368MR2033390
- [5] S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmholtz equation. SIAM J. Contr. Optim. 42 (2003) 1523–1544. Zbl1051.49029MR2046373
- [6] J.A. Bello, E. Fernández-Cara, J. Lemoine and J. Simon, The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim. 35 (1997) 626–640. Zbl0873.76019MR1436642
- [7] M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).
- [8] M. Bendsoe, N. Olhoff and O. Sigmund, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006). Zbl1099.74005
- [9] F. Brezzi and M. Fortin, Mixed and hybrid finite element method, Springer Series in Computational Mathematics 15. Springer Verlag- New York (1991). Zbl0788.73002MR1115205
- [10] G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17–49. Zbl0762.49017MR1076053
- [11] J. Céa, Conception optimale ou identification de forme, calcul rapide de la dérivée directionnelle de la fonction coút. RAIRO Math. Modél. Anal. Numér. 20 (1986) 371–402. Zbl0604.49003MR862783
- [12] J. Céa, A. Gioan and J. Michel, Quelques résultats sur l’identification de domains. Calcolo (1973). Zbl0303.93023
- [13] J. Céa, S. Garreau, P. Guillaume and M. Masmoudi, The shape and topological optimizations connection. Comput. Methods Appl. Mech. Engrg. 188 (2000) 713–726. Zbl0972.74057MR1784106
- [14] M. Chipot and G. Dal Maso, Relaxed shape optimization: the case of nonnegative data for the Dirichlet problems. Adv. Math. Sci. Appl. 1 (1992) 47–81. Zbl0769.35013MR1161483
- [15] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). Zbl0383.65058MR520174
- [16] R. Dautray and J. Lions, Analyse mathémathique et calcul numérique pour les sciences et les techniques. Masson, collection CEA (1987). Zbl0642.35001
- [17] S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. Zbl0990.49028MR1825864
- [18] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer Verlag (1986). Zbl0585.65077MR851383
- [19] R. Glowinski and O. Pironneau, Toward the computational of minimun drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58–66. Zbl0361.76035MR455851
- [20] P. Guillaume, Dérivées d’ordre supérieur en conception optimale de forme. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (1994).
- [21] P. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape design. Numer. Math. 67 (1994) 231–250. Zbl0792.65044MR1262782
- [22] P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41 (2002) 1052–1072. Zbl1053.49031MR1972502
- [23] P. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1–31. Zbl1093.49029MR2081970
- [24] M.D. Gunzburger and H. Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895–909. Zbl0917.49004MR1613877
- [25] M. Hassine and M. Masmoudi, The topological sensitivity analysis for the Quasi-Stokes problem. ESAIM: COCV 10 (2004) 478–504. Zbl1072.49027MR2111076
- [26] J. Jacobsen, N. Olhoff and E. Ronholt, Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).
- [27] J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod (1968). Zbl0165.10801
- [28] M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, H. Kawarada and J. Periaux Eds., International Séries Gakuto (2002). Zbl1082.93584
- [29] M. Masmoudi, J. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl. 21 (2005) 547–564. Zbl1070.35129MR2146276
- [30] V. Mazja, S.A. Nazarov and B.A. Plamenevski, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, Birkhuser (2000). Zbl1127.35301
- [31] O. Pironneau, On optimum profiles in Stokes flow. J. Fluid Mech. 59 (1973) 117–128. Zbl0274.76022MR331973
- [32] O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). Zbl0534.49001MR725856
- [33] A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule-Siegen (1995).
- [34] M. Shœnauer, L. Kallel and F. Jouve, Mechanical inclusions identification by evolutionary computation. Revue européenne des éléments finis 5 (1996) 619–648. Zbl0924.73321MR1436837
- [35] J. Simon, Domain variation for Stokes flow, in Lect. Notes Control Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28–42. Zbl0801.76075MR1129956
- [36] J. Simon, Domain variation for drag Stokes flows, in Lect. Notes Control Inform. Sci. 114, A. Bermudez Eds., Springer, Berlin (1987) 277–283. Zbl0801.76075
- [37] J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272 (electronic) Zbl0940.49026MR1691940
- [38] J. Sokolowski and A. Zochowski, Modelling of topological derivatives for contact problems. Numer. Math. 102 (2005) 145–179. Zbl1077.74039MR2206676
- [39] R. Temam, Navier Stokes equations (1985).