# Semigeodesics and the minimal time function

ESAIM: Control, Optimisation and Calculus of Variations (2006)

- Volume: 12, Issue: 1, page 120-138
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topNour, Chadi. "Semigeodesics and the minimal time function." ESAIM: Control, Optimisation and Calculus of Variations 12.1 (2006): 120-138. <http://eudml.org/doc/244822>.

@article{Nour2006,

abstract = {We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.},

author = {Nour, Chadi},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {minimal time function; Hamilton-Jacobi equations; viscosity solutions; minimal trajectories; eikonal equations; monotonicity of trajectories; proximal analysis; nonsmooth analysis; Hamilton–Jacobi equation; proximal solution; time-optimal control; differential inclusion},

language = {eng},

number = {1},

pages = {120-138},

publisher = {EDP-Sciences},

title = {Semigeodesics and the minimal time function},

url = {http://eudml.org/doc/244822},

volume = {12},

year = {2006},

}

TY - JOUR

AU - Nour, Chadi

TI - Semigeodesics and the minimal time function

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2006

PB - EDP-Sciences

VL - 12

IS - 1

SP - 120

EP - 138

AB - We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.

LA - eng

KW - minimal time function; Hamilton-Jacobi equations; viscosity solutions; minimal trajectories; eikonal equations; monotonicity of trajectories; proximal analysis; nonsmooth analysis; Hamilton–Jacobi equation; proximal solution; time-optimal control; differential inclusion

UR - http://eudml.org/doc/244822

ER -

## References

top- [1] O. Alvarez, S. Koike and I. Nakayama, Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem. SIAM J. Control Optim. 38 (2000) 470–481. Zbl0949.49020
- [2] J.P. Aubin and A. Cellina, Differential inclusions. Springer-Verlag, New York (1984). Zbl0538.34007MR755330
- [3] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Birkhäuser Boston, Inc., Boston, MA (1997). Zbl0890.49011MR1484411
- [4] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equations 15 (1990) 1713–1742. Zbl0732.35014
- [5] P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function. Calc. Var. 3 (1995) 273–298. Zbl0836.49013
- [6] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control problems. Birkhäuser Boston (2004). Zbl1095.49003MR2041617
- [7] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21–42. Zbl0884.49002
- [8] F.H. Clarke and Yu. Ledyaev, Mean value inequalities in Hilbert space. Trans. Amer. Math. Soc. 344 (1994) 307–324. Zbl0803.49018
- [9] F.H. Clarke, Yu. Ledyaev, R. Stern and P. Wolenski, Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Syst. 1 (1995) 1–48. Zbl0951.49003
- [10] F.H. Clarke, Yu. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts Math. 178 (1998). Springer-Verlag, New York. Zbl1047.49500MR1488695
- [11] F.H. Clarke and C. Nour, The Hamilton-Jacobi equation of minimal time control. J. Convex Anal. 11 (2004) 413–436. Zbl1072.49018
- [12] M.G. Crandall, H. Ishi and P.L. Lions, User’s guide to the viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. Zbl0755.35015
- [13] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1–42. Zbl0599.35024
- [14] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). Zbl0773.60070MR1199811
- [15] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. Zbl0796.49024
- [16] C. Nour, The Hamilton-Jacobi equation in optimal control: duality and geodesics. Ph.D. Thesis, Université Claude Bernard Lyon I (2003).
- [17] C. Nour, The bilateral minimal time function. J. Convex Anal., to appear. Zbl1112.49024MR2211804
- [18] P. Soravia, Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differ. Equ. 18 (1993) 1493–1514. Zbl0788.49028
- [19] H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158–133. Zbl0629.93012
- [20] V.M. Veliov, Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335–363. Zbl0901.49022
- [21] R.B. Vinter, Optimal control. Birkhäuser Boston, Inc., Boston, MA (2000). Zbl0952.49001MR1756410
- [22] P. Wolenski and Y. Zhuang, Proximal analysis and the minimal time function. SIAM J. Control Optim. 36 (1998) 1048–1072. Zbl0930.49016

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.