Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme

David P. Levadoux

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 1, page 147-155
  • ISSN: 0764-583X

Abstract

top
We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.

How to cite

top

Levadoux, David P.. "Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.1 (2005): 147-155. <http://eudml.org/doc/244825>.

@article{Levadoux2005,
abstract = {We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.},
author = {Levadoux, David P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {preconditioner; integral equation; electromagnetism; pseudodifferential operator; numerical analysis; combined field integral equation; convergence},
language = {eng},
number = {1},
pages = {147-155},
publisher = {EDP-Sciences},
title = {Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme},
url = {http://eudml.org/doc/244825},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Levadoux, David P.
TI - Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 1
SP - 147
EP - 155
AB - We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.
LA - eng
KW - preconditioner; integral equation; electromagnetism; pseudodifferential operator; numerical analysis; combined field integral equation; convergence
UR - http://eudml.org/doc/244825
ER -

References

top
  1. [1] R.J. Adams, Physical and analytical properties of a stabilized electric field integral equation. IEEE Trans. Antennas Propag. 52 (2004) 362–372. 
  2. [2] I. Babuska, Error bounds for the finite element method. Numer. Math. 16 (1971) 322–333. Zbl0214.42001
  3. [3] A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic maxwell equations by a boundary finite element method. Part 2: The discrete problem. Math. Comp. 43 (1984) 47–68. Zbl0555.65083
  4. [4] A. de La Boudonnaye, Décomposition H div - 1 / 2 ( Γ ) et nature de l’opérateur de Steklov-Poincaré du problème extérieur de l’électromagnétisme. C. R. Acad. Sci. Paris, Sér. I 316 (1993) 369–372. Zbl0767.35094
  5. [5] Q. Carayol, Développement et analyse d’une méthode multipôle multiniveau pour l’électromagnétisme. Ph.D. Thesis, Université Paris VI (2002). 
  6. [6] S. Christiansen, Résolution des équations intégrales pour la diffraction d’ondes acoustiques et électromagnétiques. Stabilisation d’algorithmes itératifs et aspects de l’analyse numérique. Ph.D. Thesis, École Polytechnique (2001). 
  7. [7] R. Colton and D. Kress, Integral Equation Methods in Scattering Theory. John Wiley & Sons (1983). Zbl0522.35001MR700400
  8. [8] I. Ivakhnenko, Yu.G. Smirnov and E.E. Tyrtyshnikov, The electric field integral equation: theory and algorithms. Inst. Math. Appl. Conf. Ser. New Der. 65 (1998) 251–262. Zbl0926.65123
  9. [9] D.P. Levadoux, Étude d’une équation intégrale adaptée à la résolution hautes fréquences de l’équation de Helmholtz. Ph.D. Thesis, Université Paris VI (2001). 
  10. [10] D.P. Levadoux and B.L. Michielsen, A new class of integral equations for scattering problems. Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Jyvaskyla, June 30–July 4 (2003). Zbl1075.78522
  11. [11] D.P. Levadoux and B.L. Michielsen, Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes. ESAIM: M2AN 38 (2004) 157–175. Zbl1130.35326
  12. [12] W. McLean and T. Tran, A preconditioning strategy for boundary element galerkin methods. Numer. Methods Partial Differential Equations 13 (1997) 283–301. Zbl0878.65101
  13. [13] B. Michielsen and D.P. Levadoux, Application de méthodes topologiques pour la réalisation de modèles CEM prédictifs dans le domaine hyperfréquence. Technical Report RF 2/03038 DEMR/DR, ONERA (Décembre 2002). 
  14. [14] J.-C. Nédélec and J. Planchard, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans 3 . RAIRO Sér. Rouge 7 (1973) 105–129. Zbl0277.65074
  15. [15] P.A. Raviart and J.-M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of the finite element method, I. Galligani, E. Magenes Eds., Springer-Verlag, Lect. Notes Math. 606 (1977) 292–315. Zbl0362.65089
  16. [16] J. Simon, Extension de méthodes multipôles rapides: résolution pour des seconds membres multiples et application aux objets diélectriques. Ph.D. Thesis, Université de Versaille Saint-Quentin-en-Yvelines (2003). 
  17. [17] O. Steinbach, On the stability of the L 2 projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367–379. Zbl0989.65124
  18. [18] O. Steinbach, On a generalized L 2 projection and some related stability estimates in Sobolev spaces. Numer. Math. 90 (2002) 775–786. Zbl0997.65120
  19. [19] O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191–216. Zbl0922.65076
  20. [20] G. Sylvand, La méthode multipôle rapide en électromagnétisme: performance, parallélisation, applications. Ph.D. Thesis, École Polytechnique (2002). 
  21. [21] D. Volpert and D.P. Levadoux, Expertise ser et code axisymétrique pour objets de révolution. Technical Report 1/05592 DEMR, ONERA (Décembre 2001). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.