An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch; Marguerite Gisclon; Chi-Kun Lin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 3, page 477-486
  • ISSN: 0764-583X

Abstract

top
The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x . This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.–L. Lions’ book that means with constant viscosity coefficients.

How to cite

top

Bresch, Didier, Gisclon, Marguerite, and Lin, Chi-Kun. "An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.3 (2005): 477-486. <http://eudml.org/doc/244834>.

@article{Bresch2005,
abstract = {The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on $x$. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.–L. Lions’ book that means with constant viscosity coefficients.},
author = {Bresch, Didier, Gisclon, Marguerite, Lin, Chi-Kun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {compressible flows; Navier-Stokes equations; low Mach (Froude) number limit shallow-water equations; lake equations; nonconstant density; viscous shallow water equation; viscous lake equations; well prepared data; weak solutions},
language = {eng},
number = {3},
pages = {477-486},
publisher = {EDP-Sciences},
title = {An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit},
url = {http://eudml.org/doc/244834},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Bresch, Didier
AU - Gisclon, Marguerite
AU - Lin, Chi-Kun
TI - An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 3
SP - 477
EP - 486
AB - The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on $x$. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.–L. Lions’ book that means with constant viscosity coefficients.
LA - eng
KW - compressible flows; Navier-Stokes equations; low Mach (Froude) number limit shallow-water equations; lake equations; nonconstant density; viscous shallow water equation; viscous lake equations; well prepared data; weak solutions
UR - http://eudml.org/doc/244834
ER -

References

top
  1. [1] T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). Zbl1101.35050
  2. [2] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211–223. Zbl1037.76012
  3. [3] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47–82. Zbl1138.76446
  4. [4] D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009–1037. Zbl1106.76436
  5. [5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125–148. Zbl1114.76347
  6. [6] R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). Zbl1061.35511MR1860675
  7. [7] B. Desjardins, E. Grenier, P.–L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. Zbl0992.35067
  8. [8] I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). Zbl1329.76292MR2167201
  9. [9] J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89–102. Zbl0997.76023
  10. [10] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. Zbl0885.35090
  11. [11] C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493–1515. Zbl0999.76033
  12. [12] C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479–510. Zbl0953.76011
  13. [13] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). Zbl0908.76004MR1637634
  14. [14] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585–627. Zbl0909.35101
  15. [15] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. Zbl0974.76072
  16. [16] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). Zbl0974.76072MR1834114
  17. [17] M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311–324. Zbl0907.76013
  18. [18] J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). Zbl0429.76001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.