Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : formalisme unifié et classes d’approximation
Marc Demange; Vangelis Paschos
RAIRO - Operations Research - Recherche Opérationnelle (2002)
- Volume: 36, Issue: 3, page 237-277
 - ISSN: 0399-0559
 
Access Full Article
topAbstract
topHow to cite
topDemange, Marc, and Paschos, Vangelis. "Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : formalisme unifié et classes d’approximation." RAIRO - Operations Research - Recherche Opérationnelle 36.3 (2002): 237-277. <http://eudml.org/doc/244839>.
@article{Demange2002,
	author = {Demange, Marc, Paschos, Vangelis},
	journal = {RAIRO - Operations Research - Recherche Opérationnelle},
	language = {fre},
	number = {3},
	pages = {237-277},
	publisher = {EDP-Sciences},
	title = {Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : formalisme unifié et classes d’approximation},
	url = {http://eudml.org/doc/244839},
	volume = {36},
	year = {2002},
}
TY  - JOUR
AU  - Demange, Marc
AU  - Paschos, Vangelis
TI  - Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : formalisme unifié et classes d’approximation
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2002
PB  - EDP-Sciences
VL  - 36
IS  - 3
SP  - 237
EP  - 277
LA  - fre
UR  - http://eudml.org/doc/244839
ER  - 
References
top- [1] S. Arora, C. Lund, R. Motwani, M. Sudan et M. Szegedy, Proof verification and intractability of approximation problems, in Proc. FOCS’92 (1992) 14-23. Zbl0977.68539
 - [2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti–Spaccamela et M. Protasi, Complexity and approximation. Combinatorial optimization problems and their approximability properties. Springer, Heildelberg (1999). Zbl0937.68002
 - [3] C. Berge, Graphs and hypergraphs. North Holland, Amsterdam (1973). Zbl0254.05101MR357172
 - [4] P. Berman et M. Fürer, Approximating maximum independent set in bounded degree graphs, in Proc. Symposium on Discrete Algorithms (1994) 365-371. Zbl0873.68163MR1285180
 - [5] B.B. Boppana et M.M. Halldórsson, Approximating maximum independent sets by excluding subgraphs. BIT 32 (1992) 180-196. Zbl0761.68044MR1172185
 - [6] V. Chvátal, A greedy-heuristic for the set covering problem. Math. Oper. Res. 4 (1979) 233-235. Zbl0443.90066MR539404
 - [7] S.A. Cook, The complexity of theorem-proving procedures, in Proc. STOC’71 (1971) 151-158. Zbl0253.68020
 - [8] M. Demange, P. Grisoni et V.T. Paschos, Differential approximation algorithms for some combinatorial optimization problems. Theoret. Comput. Sci. 209 (1998) 107-122. Zbl0912.68061MR1647498
 - [9] M. Demange, J. Monnot et V.T. Paschos, Bridging gap between standard and differential polynomial approximation: The case of bin-packing. Appl. Math. Lett. 12 (1999) 127-133. Zbl0942.68144MR1750071
 - [10] , Maximizing the number of unused bins. Found. Comput. Decision Sci. 26 (2001) 169-186. Zbl1204.90080MR1843945
 - [11] M. Demange et V.T. Paschos, On an approximation measure founded on the links between optimization and polynomial approximation theory. Theoret. Comput. Sci. 158 (1996) 117-141. Zbl0871.90069MR1388966
 - [12] , Valeurs extrémales d’un problème d’optimisation combinatoire et approximation polynomiale. Math. Inf. Sci. Humaines 135 (1996) 51-66. Zbl0885.90093
 - [13] , Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : de la structure de NPO à la structure des instances. RAIRO: Oper. Res. (à paraître). Zbl1096.68783
 - [14] , Improved approximations for maximum independent set via approximation chains. Appl. Math. Lett. 10 (1997) 105-110. Zbl0883.68067MR1457649
 - [15] , Towards a general formal framework for polynomial approximation. LAMSADE, Université Paris-Dauphine, Cahier du LAMSADE 177 (2001).
 - [16] R. Duh et M. Fürer, Approximation of -set cover by semi-local optimization, in Proc. STOC’97 (1997) 256-265. Zbl0962.68172
 - [17] U. Feige et J. Kilian, Zero knowledge and the chromatic number, in Proc. Conference on Computational Complexity (1996) 278-287. Zbl0921.68089
 - [18] W. Fernandez de la Vega, Sur la cardinalité maximum des couplages d’hypergraphes aléatoires uniformes. Discrete Math. 40 (1982) 315-318. Zbl0488.05051
 - [19] M.R. Garey et D.S. Johnson, Computers and intractability. A guide sto the theory of NP-completeness. W.H. Freeman, San Francisco (1979). Zbl0411.68039MR519066
 - [20] M.M. Halldórsson, A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 45 (1993) 19-23. Zbl0768.68043MR1207010
 - [21] , Approximations via partitioning. JAIST Research Report IS-RR-95-0003F, Japan Advanced Institute of Science and Technology, Japan (1995).
 - [22] , Approximating -set cover and complementary graph coloring, in Proc. International Integer Programming and Combinatorial Optimization Conference. Springer Verlag, Lecture Notes in Comput. Sci. 1084 (1996) 118-131. MR1441796
 - [23] M.M. Halldórsson et J. Radhakrishnan, Greed is good: Approximating independent sets in sparse and bounded-degree graphs, in Proc. STOC’94 (1994) 439-448.
 - [24] , Improved approximations of independent sets in bounded-degree graphs via subgraph removal. Nordic J. Comput. 1 (1994) 475-492. Zbl0817.68088MR1335260
 - [25] R. Hassin et S. Lahav, Maximizing the number of unused colors in the vertex coloring problem. Inform. Process. Lett. 52 (1994) 87-90. Zbl0809.05047MR1299662
 - [26] J. Håstad, Clique is hard to approximate within . Acta Math. 182 (1999) 105-142. Zbl0989.68060MR1687331
 - [27] D.S. Hochbaum, Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Appl. Math. 6 (1983) 243-254. Zbl0523.05055MR712925
 - [28] , Approximation algorithms for NP-hard problems. PWS, Boston (1997).
 - [29] O.H. Ibarra et C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems. J. Assoc. Comput. Mach. 22 (1975) 463-468. Zbl0345.90049MR378463
 - [30] D.S. Johnson, Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9 (1974) 256-278. Zbl0296.65036MR449012
 - [31] R.M. Karp, Reducibility among combinatorial problems, dans Complexity of computer computations, édité par R.E. Miller et J.W. Thatcher. Plenum Press, New York (1972) 85-103. MR378476
 - [32] S. Khanna, R. Motwani, M. Sudan et U. Vazirani, On syntactic versus computational views of approximability. SIAM J. Comput. 28 (1998) 164-191. Zbl0915.68068MR1630433
 - [33] H.R. Lewis et C.H. Papadimitriou, Elements of the theory of computation. Prentice-Hall (1981). Zbl0464.68001
 - [34] C. Lund et M. Yannakakis, On the hardness of approximating minimization problems. J. Assoc. Comput. Mach. 41 (1994) 960-981. Zbl0814.68064MR1371491
 - [35] R. Motwani, Lecture notes on approximation algorithms, Vol. I. Stanford University (1993).
 - [36] G.L. Nemhauser, L.A. Wolsey et M.L. Fischer, An analysis of approximations for maximizing submodular set functions. Math. Programming 14 (1978) 265-294. Zbl0374.90045MR503866
 - [37] C.H. Papadimitriou et K. Steiglitz, Combinatorial optimization: Algorithms and complexity. Prentice Hall, New Jersey (1981). Zbl0503.90060MR663728
 - [38] R. Raz et S. Safra, A sub-constant error probability low-degree test and a sub-constant error probability PCP characterization of NP, in Proc. STOC’97 (1997) 475-484. Zbl0963.68175
 - [39] D. Simchi–Levi, New worst-case results for the bin-packing problem. Naval Res. Logistics 41 (1994) 579-585. Zbl0809.90111
 - [40] P. Turán, On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48 (1941) 436-452. Zbl0026.26903
 - [41] V. Vazirani, Approximation algorithms. Springer, Heildelberg (2001). Zbl1005.68002MR1851303
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.