Detecting atypical data in air pollution studies by using shorth intervals for regression
ESAIM: Probability and Statistics (2005)
- Volume: 9, page 230-240
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topDurot, Cécile, and Thiébot, Karelle. "Detecting atypical data in air pollution studies by using shorth intervals for regression." ESAIM: Probability and Statistics 9 (2005): 230-240. <http://eudml.org/doc/244864>.
@article{Durot2005,
abstract = {To validate pollution data, subject-matter experts in Airpl (an organization that maintains a network of air pollution monitoring stations in western France) daily perform visual examinations of the data and check their consistency. In this paper, we describe these visual examinations and propose a formalization for this problem. The examinations consist in comparisons of so-called shorth intervals so we build a statistical test that compares such intervals in a nonparametric regression model. This allows to detect atypical data. A practical application of the test is given.},
author = {Durot, Cécile, Thiébot, Karelle},
journal = {ESAIM: Probability and Statistics},
keywords = {air pollution; validation; regression; bootstrap; shorth; Air pollution},
language = {eng},
pages = {230-240},
publisher = {EDP-Sciences},
title = {Detecting atypical data in air pollution studies by using shorth intervals for regression},
url = {http://eudml.org/doc/244864},
volume = {9},
year = {2005},
}
TY - JOUR
AU - Durot, Cécile
AU - Thiébot, Karelle
TI - Detecting atypical data in air pollution studies by using shorth intervals for regression
JO - ESAIM: Probability and Statistics
PY - 2005
PB - EDP-Sciences
VL - 9
SP - 230
EP - 240
AB - To validate pollution data, subject-matter experts in Airpl (an organization that maintains a network of air pollution monitoring stations in western France) daily perform visual examinations of the data and check their consistency. In this paper, we describe these visual examinations and propose a formalization for this problem. The examinations consist in comparisons of so-called shorth intervals so we build a statistical test that compares such intervals in a nonparametric regression model. This allows to detect atypical data. A practical application of the test is given.
LA - eng
KW - air pollution; validation; regression; bootstrap; shorth; Air pollution
UR - http://eudml.org/doc/244864
ER -
References
top- [1] L. Bel, L. Bellanger, V. Bonneau, G. Ciuperca, D. Dacunha-Castelle, C. Deniau, B. Ghattas, Y. Misiti and G. Oppenheim, Éléments de comparaison de prévisions statistiques des pics d’ozone. Rev. Statist. App. 3 (1999) 7–25.
- [2] C. Durot and K. Thiébot. Bootstrapping the shorth for regression. Submitted (2003). Zbl1187.62034
- [3] P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990) 521–529.
- [4] K. Thiébot, Synthèse de l’enquête sur la procédure de validation de données dans les résaux de surveillance de pollution athmosphérique. Technical report, Air Pays de la Loire (1998).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.