Bootstrapping the shorth for regression
ESAIM: Probability and Statistics (2006)
- Volume: 10, page 216-235
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- D.F. Andrews, P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers and J.W. Tukey, Robust estimates of location. Survey and advances. Princeton Univ. Press, Princeton, N.J. (1972).
- D. De Angelis, P. Hall and G.A. Young, Analytical and bootstrap approximations to estimator distributions in l1 regression. J. Am. Stat. Assoc.88 (1993) 1310–1316.
- C. Durot and K. Thiébot, Detecting atypical data in air pollution studies by using shorth intervals for regression. ESAIM: PS9 (2005) 230–240.
- M. Falk and R.-D. Reiss, Weak convergence of smoothed and nonsmoothed bootstrap quantiles estimates. Ann. Probab.17 (1989) 362–371.
- P. Groeneboom, Brownian motion with a parabolic drift and Airy functions Probab. Th. Rel. Fields81 (1989) 79–109.
- R. Grübel, The length of the shorth. Ann. Statist.16 (1988) 619–628.
- P. Hall, Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16 (1988) 927–953.
- P. Hall, T.J. DiCiccio and J.P. Romano, On smoothing and the bootstrap. Ann. Statist.17 (1989) 692–704.
- P. Hall, J.W. Kay and D.M. Titterington, Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika77 (1990) 521–528.
- E. Janaszewska and A.V. Nagaev, On the joint distribution of the shorth height and length. Math. Meth. Statist.7 (1998) 210–229.
- J. Kim and D. Pollard, Cube root asymptotics. Ann. Statist.18 (1990) 191–219.
- A. Narayanan and T.W. Sager, Table for the asymptotic distribution of univariate mode estimators. J. Stat. Comput. Simul.33 (1989) 37–51.
- A.I. Sakhanenko, Estimates in the invariance principle. Predel'nye Teoremy Teorii Veroyatnostej, Tr. Inst. Mat.5 (1985) 27–44.
- G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. New York, Wiley (1986).
- C.J. Stone, Optimal uniform rate of convergence for nonparametric estimators of a density function and its derivatives. Recent Advances in Statistics, Academic Press, New York (1983) 293–406.
- K. Thiébot, Analyses statistiques et validation de données de pollution atmosphérique. Ph.D. thesis, Université Paris-Sud Orsay, France (2001).
- Y.G. Yatracos, On the estimation of the derivatives of a function with the derivatives of an estimate. J. Multivariate Anal.28 (1989) 172–175.