# Topological sensitivity analysis for time-dependent problems

Boris Vexler; Takéo Takahashi; Samuel Amstutz

ESAIM: Control, Optimisation and Calculus of Variations (2008)

- Volume: 14, Issue: 3, page 427-455
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topVexler, Boris, Takahashi, Takéo, and Amstutz, Samuel. "Topological sensitivity analysis for time-dependent problems." ESAIM: Control, Optimisation and Calculus of Variations 14.3 (2008): 427-455. <http://eudml.org/doc/244888>.

@article{Vexler2008,

abstract = {The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered.},

author = {Vexler, Boris, Takahashi, Takéo, Amstutz, Samuel},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {topological sensitivity; topology optimization; parabolic equations; hyperbolic equations},

language = {eng},

number = {3},

pages = {427-455},

publisher = {EDP-Sciences},

title = {Topological sensitivity analysis for time-dependent problems},

url = {http://eudml.org/doc/244888},

volume = {14},

year = {2008},

}

TY - JOUR

AU - Vexler, Boris

AU - Takahashi, Takéo

AU - Amstutz, Samuel

TI - Topological sensitivity analysis for time-dependent problems

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2008

PB - EDP-Sciences

VL - 14

IS - 3

SP - 427

EP - 455

AB - The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered.

LA - eng

KW - topological sensitivity; topology optimization; parabolic equations; hyperbolic equations

UR - http://eudml.org/doc/244888

ER -

## References

top- [1] G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80. Zbl1167.49324MR2211063
- [2] H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics 1846. Springer-Verlag, Berlin (2004). Zbl1113.35148MR2168949
- [3] H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements. Appl. Math. Optim. 54 (2006) 223–235. Zbl1102.35306MR2239535
- [4] H. Ammari and H. Kang, Generalized polarization tensors, inverse conductivity problems, and dilute composite materials: a review, in Inverse problems, multi-scale analysis and effective medium theory, Contemp. Math. 408, Amer. Math. Soc., Providence, RI (2006) 1–67. Zbl1111.35101MR2262349
- [5] S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Anal. 49 (2006) 87–108. Zbl1187.49036MR2260558
- [6] S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. Zbl1097.65070MR2235384
- [7] S. Amstutz and N. Dominguez, Topological sensitivity analysis in the context of ultrasonic nondestructive testing. RICAM report 2005-21 (2005). Zbl1244.74105
- [8] S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 81–101. Zbl1167.74437MR2211064
- [9] M. Bonnet, Topological sensitivity for 3d elastodynamic and acoustic inverse scattering in the time domain. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 5239–5254. Zbl1119.74026MR2241411
- [10] M. Bonnet and B.B. Guzina, Sounding of finite solid bodies by way of topological derivative. Int. J. Numer. Methods Eng. 61 (2004) 2344–2373. Zbl1075.74564MR2103152
- [11] M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys. 194 (2004) 344–362. Zbl1044.65053MR2033389
- [12] T. Cazenave and A. Haraux, Introduction aux problèmes d’évolution semi-linéaires, Mathématiques & Applications 1. Ellipses, Paris (1990). Zbl0786.35070MR1299976
- [13] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 6. INSTN: Collection Enseignement, Masson, Paris (1988). Zbl0642.35001MR944304
- [14] H.A. Eschenauer and A. Schumacher, Topology and shape optimization procedures using hole positioning criteria — theory and applications, in Topology optimization in structural mechanics, CISM Courses and Lectures 374, Springer, Vienna (1997) 135–196. Zbl0885.73050MR1488756
- [15] H.A. Eschenauer, V.V. Kobolev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optimization 8 (1994) 42–51.
- [16] S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778 (electronic). Zbl0990.49028MR1825864
- [17] P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 41 (2002) 1042–1072 (electronic). Zbl1053.49031MR1972502
- [18] B.B. Guzina and M. Bonnet, Topological derivative for the inverse scattering of elastic waves. Quart. J. Mech. Appl. Math. 57 (2004) 161–179. Zbl1112.74035MR2068401
- [19] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2. Travaux et Recherches Mathématiques 18. Dunod, Paris (1968). Zbl0165.10801MR247244
- [20] S.A. Nazarov and J. Sokolowski, The topological derivative of the Dirichlet integral under the formation of a thin bridge. Siberian Math. J. 45 (2004) 341–355. Zbl1071.35037MR2061421
- [21] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies 27. Princeton University Press, Princeton, N. J. (1951). Zbl0044.38301MR43486
- [22] J. Pommier and B. Samet, The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole. SIAM J. Control Optim. 43 (2004) 899–921 (electronic). Zbl1080.49028MR2114381
- [23] M. Schiffer and G. Szegö, Virtual mass and polarization. Trans. Amer. Math. Soc. 67 (1949) 130–205. Zbl0035.11803MR33922
- [24] A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopschpositionierungskriterien. Ph.D. thesis, Univ. Siegen (1995).
- [25] J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272 (electronic). Zbl0940.49026MR1691940

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.