Numerical simulation of a point-source initiated flame ball with heat losses
Jacques Audounet; Jean-Michel Roquejoffre; Hélène Rouzaud
- Volume: 36, Issue: 2, page 273-291
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAudounet, Jacques, Roquejoffre, Jean-Michel, and Rouzaud, Hélène. "Numerical simulation of a point-source initiated flame ball with heat losses." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.2 (2002): 273-291. <http://eudml.org/doc/244904>.
@article{Audounet2002,
abstract = {This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.},
author = {Audounet, Jacques, Roquejoffre, Jean-Michel, Rouzaud, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {flame ball; integro-differential equation; time discretisation; numerical quenching; fractional derivative; time discretization},
language = {eng},
number = {2},
pages = {273-291},
publisher = {EDP-Sciences},
title = {Numerical simulation of a point-source initiated flame ball with heat losses},
url = {http://eudml.org/doc/244904},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Audounet, Jacques
AU - Roquejoffre, Jean-Michel
AU - Rouzaud, Hélène
TI - Numerical simulation of a point-source initiated flame ball with heat losses
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 2
SP - 273
EP - 291
AB - This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
LA - eng
KW - flame ball; integro-differential equation; time discretisation; numerical quenching; fractional derivative; time discretization
UR - http://eudml.org/doc/244904
ER -
References
top- [1] J. Audounet, V. Giovangigli and J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Phys. D 121 (1998) 295–316. Zbl0938.80003
- [2] J. Audounet and J.-M. Roquejoffre, An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis. Systèmes différentiels fractionnaires: Modèles, Méthodes et Applications, Matignon Montseny Eds, ESAIM Proc. 5 (1998). MR1665560
- [3] C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO Anal. Numér. 3 (1978) 237–245. Zbl0392.65042
- [4] H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 3 (1982) 213–229. Zbl0485.65087
- [5] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (1990) 381–392.
- [6] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame 84 (1991) 411–422.
- [7] R. Gorenflo and S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991). Zbl0717.45002MR1095269
- [8] G. Joulin, Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 43 (1985) 99–113.
- [9] O.A. Ladyzhenskaya, N.N. Uraltseva and S.N. Solonnikov, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). Zbl0174.15403
- [10] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 3 (1986) 704–719. Zbl0624.65015
- [11] C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555–583. Zbl0834.65092
- [12] H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1 332 (2001) 1083–1086. Zbl0984.45007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.