Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet; Jean-Michel Roquejoffre; Hélène Rouzaud

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 2, page 273-291
  • ISSN: 0764-583X

Abstract

top
This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

How to cite

top

Audounet, Jacques, Roquejoffre, Jean-Michel, and Rouzaud, Hélène. "Numerical simulation of a point-source initiated flame ball with heat losses." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.2 (2002): 273-291. <http://eudml.org/doc/244904>.

@article{Audounet2002,
abstract = {This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.},
author = {Audounet, Jacques, Roquejoffre, Jean-Michel, Rouzaud, Hélène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {flame ball; integro-differential equation; time discretisation; numerical quenching; fractional derivative; time discretization},
language = {eng},
number = {2},
pages = {273-291},
publisher = {EDP-Sciences},
title = {Numerical simulation of a point-source initiated flame ball with heat losses},
url = {http://eudml.org/doc/244904},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Audounet, Jacques
AU - Roquejoffre, Jean-Michel
AU - Rouzaud, Hélène
TI - Numerical simulation of a point-source initiated flame ball with heat losses
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 2
SP - 273
EP - 291
AB - This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
LA - eng
KW - flame ball; integro-differential equation; time discretisation; numerical quenching; fractional derivative; time discretization
UR - http://eudml.org/doc/244904
ER -

References

top
  1. [1] J. Audounet, V. Giovangigli and J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Phys. D 121 (1998) 295–316. Zbl0938.80003
  2. [2] J. Audounet and J.-M. Roquejoffre, An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis. Systèmes différentiels fractionnaires: Modèles, Méthodes et Applications, Matignon & Montseny Eds, ESAIM Proc. 5 (1998). MR1665560
  3. [3] C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO Anal. Numér. 3 (1978) 237–245. Zbl0392.65042
  4. [4] H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 3 (1982) 213–229. Zbl0485.65087
  5. [5] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (1990) 381–392. 
  6. [6] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame 84 (1991) 411–422. 
  7. [7] R. Gorenflo and S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991). Zbl0717.45002MR1095269
  8. [8] G. Joulin, Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 43 (1985) 99–113. 
  9. [9] O.A. Ladyzhenskaya, N.N. Uraltseva and S.N. Solonnikov, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). Zbl0174.15403
  10. [10] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 3 (1986) 704–719. Zbl0624.65015
  11. [11] C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555–583. Zbl0834.65092
  12. [12] H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1 332 (2001) 1083–1086. Zbl0984.45007

NotesEmbed ?

top

You must be logged in to post comments.