Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications
ESAIM: Probability and Statistics (2005)
- Volume: 9, page 74-97
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Azencott, Grandes déviations et applications, in École d’été de Probabilité de Saint-Flour, P.L. Hennequin Ed. Springer-Verlag, Berlin. Lect. Notes Math. 774 (1980) 1–176. Zbl0435.60028
- [2] A. Badrikian and S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires Gaussiennes. Springer-Verlag, Berlin. Lect. Notes Math. 379 (1974). Zbl0288.60009MR420760
- [3] Y.M. Berezansky, Z.G. Sheftel and G.F. Us, Functional Analysis, Vol. 1. Oper. Theor. Adv. Appl. 85 (1997) 125–134. Zbl0859.46001
- [4] G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems. Oxford University Press, Oxford. Oxford Lect. Ser. Math. Appl. 15 (1998). Zbl0915.49001MR1694383
- [5] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations. Instituto de Matématica-UFRJ Rio de Janeiro, Brazil. Textos de Métodos Matématicos 26 (1993).
- [6] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press: Cambridge, England. Encyclopedia Math. Appl. (1992). Zbl0761.60052MR1207136
- [7] A. de Bouard and A. Debussche, The Stochastic Nonlinear Schrödinger Equation in . Stochastic Anal. Appl. 21 (2003) 97–126. Zbl1027.60065
- [8] A. de Bouard and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123 (2002) 76–96. Zbl1008.35074
- [9] A. de Bouard and A. Debussche, Finite time blow-up in the additive supercritical nonlinear Schrödinger equation: the real noise case. Contemp. Math. 301 (2002) 183–194. Zbl1017.35105
- [10] A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Phys. D 162 (2002) 131–154. Zbl0988.35156
- [11] S.A. Derevyanko, S.K. Turitsyn and D.A. Yakusev, Non-gaussian statistics of an optical soliton in the presence of amplified spontaneaous emission. Optics Lett. 28 (2003) 2097–2099.
- [12] J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, New York. Pure Appl. Math. (1986). Zbl0705.60029MR997938
- [13] A. Dembo and O. Zeitouni, Large deviation techniques and applications (2nd edition). Springer-Verlag, New York. Appl. Math. 38 (1998). Zbl0896.60013MR1619036
- [14] P.D. Drummond and J.F. Corney, Quantum noise in optical fibers. II. Raman jitter in soliton communications. J. Opt. Soc. Am. B 18 (2001) 153–161.
- [15] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island, Grad. Stud. in Math. 119 (1998). Zbl0902.35002
- [16] G.E. Falkovich, I. Kolokolov, V. Lebedev and S.K. Turitsyn, Statistics of soliton-bearing systems with additive noise. Phys. Rev. E 63 (2001) 025601(R).
- [17] G. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev and S.K. Turitsyn, Non-Gaussian error probability in optical soliton transmission. Physica D 195 (2004) 1–28. Zbl1050.78007
- [18] É. Gautier, Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise. Preprint IRMAR, Rennes (2004). Submitted for publication. Zbl1085.60016MR2178501
- [19] T. Kato, On Nonlinear Schrödinger Equation. Ann. Inst. H. Poincaré, Phys. Théor. 46 (1987) 113–129. Zbl0632.35038
- [20] V. Konotop and L. Vázquez, Nonlinear random waves. World Scientific Publishing Co., Inc.: River Edge, New Jersey (1994). Zbl1058.76500MR1425880
- [21] R.O. Moore, G. Biondini and W.L. Kath, Importance sampling for noise-induced amplitude and timing jitter in soliton transmission systems. Optics Lett. 28 (2003) 105–107. Zbl1053.78506
- [22] C. Sulem and P.L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse. Springer-Verlag, New York, Appl. Math. Sci. (1999). Zbl0928.35157MR1696311
- [23] J.B. Walsh, An introduction to stochastic partial differential equations, in École d’été de Probabilité de Saint-Flour, P.L. Hennequin Ed. Springer-Verlag, Berlin, Lect. Notes Math. 1180 (1986) 265–439. Zbl0608.60060