On nonlinear Schrödinger equations
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 46, Issue: 1, page 113-129
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem. General case, J. Functional Anal., t. 32, 1979, p. 1-32. Zbl0396.35028MR533218
- [2] J. Ginibre and G. Velo, The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincaré, Analyse non linéaire, t. 2, 1985, p. 309-327. Zbl0586.35042MR801582
- [3] J. Howland, Stationary scattering theory for time-dependent Hamiltonians, Math. Ann. t. 207, 1974, p. 315-335. Zbl0261.35067MR346559
- [4] Y. Tsutsumi, Global strong solutions for nonlinear Schrödinger equations, Preprint, Hiroshima, 1986. MR913674
- [5] M.M. Vainberg, Variational methods for the study of nonlinear operators (English translation), San Francisco-London-Amsterdam, Holden-Day, 1964. Zbl0122.35501MR176364
- [6] K. Yajima, Existence of solutions for Schrödinger evolution equations, Preprint, Tokyo, 1986. MR891945
Citations in EuDML Documents
top- Éric Gautier, Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications
- Riccardo Adami, Gianfausto Dell'Antonio, Rodolfo Figari, Alessandro Teta, The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity
- N Burq, P Gérard, N Tzvetkov, On nonlinear Schrödinger equations in exterior domains
- Riccardo Adami, Gianfausto Dell'Antonio, Rodolfo Figari, Alessandro Teta, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
- Jean Bourgain, W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
- Franck Merle, Nonexistence of minimal blow-up solutions of equations in
- P. E. Zhidkov, On invariant measures for some infinite-dimensional dynamical systems
- Frank Merle, Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation
- Éric Gautier, Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications
- Toshiyuki Suzuki, Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains