Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates
G. Perla Menzala; Ademir F. Pazoto; Enrique Zuazua
- Volume: 36, Issue: 4, page 657-691
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.M. Ball, Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 41 (1973) 69–90. Zbl0254.73042
- [2] Ph. Ciarlet, Mathematical elasticity, Vol. II. Theory of plates. Stud. Math. Appl. 27 (1997). Zbl0888.73001MR1477663
- [3] A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult and Z. Tutek, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111–161. Zbl0653.73010
- [4] R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl. 29 (1970) 443–454. Zbl0187.04803
- [5] A. Haraux and E. Zuazua, Decay estimates for some damped hyperbolic equations. Arch. Rational Mech. Anal. 100 (1998) 191–206. Zbl0654.35070
- [6] V.A. Kondratiev and O.A. Oleinik, Hardy’s and Korn’s type inequalities and their applications. Rendiconti di Matematica VII (1990) 641–666. Zbl0767.35020
- [7] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. (9) 69 (1990) 33–55. Zbl0636.93064
- [8] J.E. Lagnese, Boundary stabilization of thin plates. SIAM Stud. Appl. Math., Philadelphia (1989). Zbl0696.73034MR1061153
- [9] J.E. Lagnese, Recent progress in exact boundary controllability and uniform stability of thin beams and plates. Lect. Notes in Pure and Appl. Math. 128, Dekker, New York (1991) 61–111. Zbl0764.93014
- [10] I. Lasiecka, Weak, classical and intermediate solutions to full von Kármán system of dynamic nonlinear elasticity. Appl. Anal. 68 (1998) 121–145. Zbl0905.35092
- [11] J.E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differential Equations 91 (1991) 355–388. Zbl0802.73052
- [12] J.L. Lions, Perturbations singulières dans les problèmes aux limites et contrôle optimal. Springer-Verlag, Berlin, in Lectures Notes in Math. 323 (1973). Zbl0268.49001MR600331
- [13] A.H. Nayfeh and D.T. Mook, Nonlinear oscillations. Wiley-Interscience, New York (1989). Zbl0418.70001MR549322
- [14] A.F. Pazoto and G.P. Menzala, Uniform stabilization of a nonlinear beam model with thermal effects and nonlinear boundary dissipation. Funkcial. Ekvac. 43 (2000) 339–360. Zbl1142.35615
- [15] J.P. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33 (1995) 255–273 Zbl0822.73037
- [16] J.P. Puel and M. Tucsnak, Global existence of the full von Kármán system. Appl. Math. Optim. 34 (1996) 139–160. Zbl0861.35121
- [17] G.P. Menzala and E. Zuazua, The beam equation as a limit of nonlinear von Kármán model. Appl. Math. Lett. 12 (1999) 47–52. Zbl0946.74035
- [18] G.P. Menzala and E. Zuazua, Timoshenko’s beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburg Sect. A 130 (2000) 855–875. Zbl0962.35176
- [19] G.P. Menzala and E. Zuazua, Timoshenko’s plate equation as a singular limit of the dynamical von Kármán system. J. Math. Pures Appl. (9) 79 (2000) 73–94. Zbl0965.74037
- [20] V.I. Sedenko, On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre-Vlasov vibrations of shallow shells with clamped boundary conditions. Appl. Math. Optim. 39 (1999) 309–326. Zbl0936.35116
- [21] J. Simon, Compact sets in the space . Ann. Mat. Pura Appl. (4) CXLVI (1987) 65–96. Zbl0629.46031
- [22] L. Trabucho de Campos and J. Viaño, Mathematical modelling of rods. Handbook of numerical analysis, Vol. IV, North Holland, Amsterdam (1996) 487–974. Zbl0873.73041
- [23] E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1 (1988) 1–28. Zbl0677.35069