# An asymptotically optimal model for isotropic heterogeneous linearly elastic plates

Ferdinando Auricchio; Carlo Lovadina; Alexandre L. Madureira

- Volume: 38, Issue: 5, page 877-897
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topAuricchio, Ferdinando, Lovadina, Carlo, and Madureira, Alexandre L.. "An asymptotically optimal model for isotropic heterogeneous linearly elastic plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.5 (2004): 877-897. <http://eudml.org/doc/245027>.

@article{Auricchio2004,

abstract = {In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with $5/6$ as shear correction factor. Asymptotic expansions are used to estimate the modeling error. We remark that our derivation is not based on asymptotic arguments only. Thus, the model obtained is more sophisticated (and accurate) than simply taking the asymptotic limit of the three dimensional problem. Moreover, we do not assume periodicity of the heterogeneities.},

author = {Auricchio, Ferdinando, Lovadina, Carlo, Madureira, Alexandre L.},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {Reissner; Mindlin; plate; heterogeneous plates; asymptotic analysis},

language = {eng},

number = {5},

pages = {877-897},

publisher = {EDP-Sciences},

title = {An asymptotically optimal model for isotropic heterogeneous linearly elastic plates},

url = {http://eudml.org/doc/245027},

volume = {38},

year = {2004},

}

TY - JOUR

AU - Auricchio, Ferdinando

AU - Lovadina, Carlo

AU - Madureira, Alexandre L.

TI - An asymptotically optimal model for isotropic heterogeneous linearly elastic plates

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2004

PB - EDP-Sciences

VL - 38

IS - 5

SP - 877

EP - 897

AB - In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with $5/6$ as shear correction factor. Asymptotic expansions are used to estimate the modeling error. We remark that our derivation is not based on asymptotic arguments only. Thus, the model obtained is more sophisticated (and accurate) than simply taking the asymptotic limit of the three dimensional problem. Moreover, we do not assume periodicity of the heterogeneities.

LA - eng

KW - Reissner; Mindlin; plate; heterogeneous plates; asymptotic analysis

UR - http://eudml.org/doc/245027

ER -

## References

top- [1] S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and Justification of Plate Models by Variational Methods. Centre de Recherches Mathematiques, CRM Proceedings and Lecture Notes (1999). Zbl0958.74033MR1696513
- [2] D.N. Arnold and R.S. Falk, Asymptotic analysis of the boundary layer for the Reissner Mindlin plate model. SIAM J. Math. Anal. 27 (1996) 486–514. Zbl0846.73027
- [3] D.N. Arnold, A.L. Madureira and S. Zhang, On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elasticity 67 (2002) 171–185. Zbl1089.74595
- [4] F. Auricchio and E. Sacco, Partial-mixed formulation and refined models for the analysis of composite laminates within FSDT. Composite Structures 46 (1999) 103–113.
- [5] D. Caillerie, Thin elastic and periodic plates. Math. Meth. Appl. Sci. 6 (1984) 159–191. Zbl0543.73073
- [6] P.G. Ciarlet, Mathematical Elasticity, volume II: Theory of Plates, North-Holland Publishing Co., Amsterdam. Stud. Math. Appl. 27 (1997). Zbl0953.74004MR1477663
- [7] P.G. Ciarlet and Ph. Destuynder, A justification of the two dimensional linear plate model. J. Mécanique 18 (1979) 315–344. Zbl0415.73072
- [8] M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate, I. Optimal error estimates. Asymptotic Anal. 13 (1996) 167–197. Zbl0856.73029
- [9] P. Destuynder, Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Ph.D. thesis, Université Pierre et Marie Curie - Paris, France (1980).
- [10] K.H. Lo, R.M. Christensen and E.M. Wu, A high-order theory of plate deformation. J. Appl. Mech. 46 (1977) 663–676. Zbl0369.73053
- [11] O.V. Motygin and S.A. Nazarov, Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plates, including laminated plates. IMA J. Appl. Math. 65 (2000) 1–28. Zbl0985.74037
- [12] J.C. Paumier and A. Raoult, Asymptotic consistency of the polynomial approximation in the linearized plate theory application to the Reissner-Mindlin model. ESAIM: Proc. 2 (1997) 203-213. Zbl0897.73033MR1486082
- [13] J. Sanchez Hubert and E. Sanchez Palencia, Introduction aux méthodes asymptotiques et à l’homogénéisation, Masson, Paris (1992).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.