Stabilization of Timoshenko beam by means of pointwise controls
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 579-600
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topXu, Gen-Qi, and Yung, Siu Pang. "Stabilization of Timoshenko beam by means of pointwise controls." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 579-600. <http://eudml.org/doc/245066>.
@article{Xu2003,
abstract = {We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned results from an effective asymptotic analysis on both the eigenvalues and the eigenfunctions, and conclude with the Riesz-Basis-Property and the spectrum-determined-growth-condition. Finally, these results are used to examine the stability effects on the system by the location of the pointwise control relative to the length of the whole beam.},
author = {Xu, Gen-Qi, Yung, Siu Pang},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Timoshenko beam; pointwise feedback control; generalized eigenfunction system; Riesz basis},
language = {eng},
pages = {579-600},
publisher = {EDP-Sciences},
title = {Stabilization of Timoshenko beam by means of pointwise controls},
url = {http://eudml.org/doc/245066},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Xu, Gen-Qi
AU - Yung, Siu Pang
TI - Stabilization of Timoshenko beam by means of pointwise controls
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 579
EP - 600
AB - We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned results from an effective asymptotic analysis on both the eigenvalues and the eigenfunctions, and conclude with the Riesz-Basis-Property and the spectrum-determined-growth-condition. Finally, these results are used to examine the stability effects on the system by the location of the pointwise control relative to the length of the whole beam.
LA - eng
KW - Timoshenko beam; pointwise feedback control; generalized eigenfunction system; Riesz basis
UR - http://eudml.org/doc/245066
ER -
References
top- [1] G. Chen, C.M. Delfour, A.M. Krall and G. Payre, Modeling, stabilization and control of serially connected beam. SIAM J. Control Optim. 25 (1987) 526-546. Zbl0621.93053MR885183
- [2] G. Chen, S.G. Krantz, D.W. Ma, C.E. Wayne and H.H. West, The Euler–Bernoulli beam equation with boundary energy dissipation, in Operator methods for optimal control problems, edited by Sung J. Lee. Marcel Dekker, New York (1988) 67-96.
- [3] G. Chen, S.G. Krantz, D.L. Russell, C.E. Wayne and H.H. West, Analysis, design and behavior of dissipative joints for coupled beams. SIAM J. Appl. Math. 49 (1989) 1665-1693. Zbl0685.73046MR1025953
- [4] F. Conrad, Stabilization of beams by pointwise feedback control. SIAM J. Control Optim. 28 (1990) 423-437. Zbl0695.93089MR1040468
- [5] J.E. Lagnese, G. Leugering and E. Schmidt, Modeling, analysis and control of dynamic Elastic Multi-link structures. Birkhauser, Basel (1994). Zbl0810.73004MR1279380
- [6] R. Rebarber, Exponential stability of coupled beam with dissipative joints: A frequency domain approach. SIAM J. Control Optim. 33 (1995) 1-28. Zbl0819.93042MR1311658
- [7] K. Ammari and M. Tucsnak, Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39 (2000) 1160-1181. Zbl0983.35021
- [8] J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM. J. Control Optim. 25 (1987) 1417-1429. Zbl0632.93057MR912448
- [9] K. Ito and N. Kunimatsu, Semigroup model and stability of the structurally damped Timoshenko beam with boundary inputs. Int. J. Control 54 (1991) 367-391. Zbl0735.35112MR1111166
- [10] Ö. Morgül, Boundary control of a Timoshenko beam attached to a rigid body: Planar motion. Int. J. Control 54 (1991) 763-791. Zbl0779.73034MR1125911
- [11] D.H. Shi and D.X. Feng, Feedback stabilization of a Timoshenko beam with an end mass. Int. J. Control 69 (1998) 285-300. Zbl0943.93051MR1684739
- [12] D.X. Feng, D.H. Shi and W.T. Zhang, Boundary feedback stabilization of Timoshenko beam with boundary dissipation. Sci. China Ser. A 41 (1998) 483-490. Zbl0903.73051MR1663171
- [13] F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 36 (1998) 1962-1986. Zbl0927.93031MR1638023
- [14] B.Z. Guo and R.Y. Yu, The Riesz basis property of discrete operators and application to a Euler–Bernoulli beam equation with boundary linear feedback control. IMA J. Math. Control Inform. 18 (2001) 241-251. Zbl1049.93017
- [15] B.P. Rao, Optimal energy decay rate in a damped Rayleigh beam, edited by S. Cox and I. Lasiecka. Contemp. Math. 209 (1997) 221-229. Zbl0910.35013MR1472297
- [16] G.Q. Xu, Boundary feedback control of elastic beams, Ph.D. Thesis. Institute of Mathematics and System Science, Chinese Academy of Sciences (2000).
- [17] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983). Zbl0516.47023MR710486
- [18] R.M. Young An introduction to nonharmonic Fourier series. Academic Press, Inc. New York (1980). Zbl0493.42001MR591684
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.