Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs

Peter I. Kogut; Günter Leugering

ESAIM: Control, Optimisation and Calculus of Variations (2009)

  • Volume: 15, Issue: 2, page 471-498
  • ISSN: 1292-8119

Abstract

top
We are concerned with the asymptotic analysis of optimal control problems for 1 -D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and its solution can be used as suboptimal controls for the original problem.

How to cite

top

Kogut, Peter I., and Leugering, Günter. "Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs." ESAIM: Control, Optimisation and Calculus of Variations 15.2 (2009): 471-498. <http://eudml.org/doc/245088>.

@article{Kogut2009,
abstract = {We are concerned with the asymptotic analysis of optimal control problems for $1$-D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and its solution can be used as suboptimal controls for the original problem.},
author = {Kogut, Peter I., Leugering, Günter},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; homogenization; elliptic equation; periodic graph; two-scale convergence; star-structure},
language = {eng},
number = {2},
pages = {471-498},
publisher = {EDP-Sciences},
title = {Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs},
url = {http://eudml.org/doc/245088},
volume = {15},
year = {2009},
}

TY - JOUR
AU - Kogut, Peter I.
AU - Leugering, Günter
TI - Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 2
SP - 471
EP - 498
AB - We are concerned with the asymptotic analysis of optimal control problems for $1$-D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and its solution can be used as suboptimal controls for the original problem.
LA - eng
KW - optimal control; homogenization; elliptic equation; periodic graph; two-scale convergence; star-structure
UR - http://eudml.org/doc/245088
ER -

References

top
  1. [1] H. Attouch, Variational Convergence for Functional and Operators, Applicable Mathematics Series. Pitman, Boston-London (1984). Zbl0561.49012MR773850
  2. [2] A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
  3. [3] G. Bouchitte and I. Fragala, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198–1226. Zbl0986.35015MR1856245
  4. [4] A. Braides, Γ -convergence for Beginners. Oxford University Press, Oxford (2002). Zbl1198.49001MR1968440
  5. [5] G. Buttazzo, Γ -convergence and its applications to some problems in the calculus of variations, in School on Homogenization, ICTP, Trieste, September 6–17, 1993, SISSA (1994) 38–61. 
  6. [6] G. Buttazzo and G. Dal Maso, Γ -convergence and optimal control problems. J. Optim. Theory Appl. 32 (1982) 385–407. Zbl0471.49012MR686213
  7. [7] J. Casado-Diaz, M. Luna-Laynez and J.D. Marin, An adaption of the multi-scale methods for the analysis of very thin reticulated structures. C. R. Acad. Sci. Paris Sér. I 332 (2001) 223–228. Zbl0984.35017MR1817366
  8. [8] G. Chechkin, V. Zhikov, D. Lukkassen and A. Piatnitski, On homogenization of networks and junctions. J. Asymp. Anal. 30 (2000) 61–80. Zbl1031.35018MR1918738
  9. [9] D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl. 31 (1997) 49–93. Zbl0912.35020MR1493040
  10. [10] D. Cioranescu, P. Donato and E. Zuazua, Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl. 69 (1990) 1–31. Zbl0638.49017MR1108873
  11. [11] C. Conca, A. Osses and J. Saint Jean Paulin, A semilinear control problem involving in homogenization. Electr. J. Diff. Equ. (2001) 109–122. Zbl0964.35039MR1804768
  12. [12] G. Dal Maso, An Introduction of Γ -Convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  13. [13] A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : deux cas bien posés. C. R. Acad. Sci. Paris Sér. I 297 (1983) 21–24. Zbl0531.49016MR719938
  14. [14] A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : un cas mal posé. C. R. Acad. Sci. Paris Sér. I 297 (1983) 93–96. Zbl0533.49013MR720916
  15. [15] S. Kesavan and M. Vanninathan, L’homogénéisation d’un problème de contrôle optimal. C. R. Acad. Sci. Paris Sér. A-B 285 (1977) 441–444. Zbl0354.49004MR451153
  16. [16] S. Kesavan and J. Saint Jean Paulin, Optimal control on perforated domains. J. Math. Anal. Appl. 229 (1999) 563–586. Zbl0919.49005MR1666365
  17. [17] P.I. Kogut, S -convergence in homogenization theory of optimal control problems. Ukrain. Matemat. Zhurnal 49 (1997) 1488–1498 (in Russian). Zbl0933.93026MR1672876
  18. [18] P.I. Kogut and G. Leugering, Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization. Asymptotic Anal. 26 (2001) 37–72. Zbl0994.49011MR1829144
  19. [19] P.I. Kogut and G. Leugering, Asymptotic analysis of state constrained semilinear optimal control problems. J. Optim. Theory Appl. 135 (2007) 301–321. Zbl1126.49020MR2346537
  20. [20] P.I. Kogut and G. Leugering, Homogenization of Dirichlet optimal control problems with exact partial controllability constraints. Asymptotic Anal. 57 (2008) 229–249. Zbl1173.35335MR2414940
  21. [21] P.I. Kogut and T.A. Mel’nyk, Asymptotic analysis of optimal control problems in thick multi-structures, in Generalized Solutions in Control Problems, Proceedings of the IFAC Workshop GSCP-2004, Pereslavl-Zalessky, Russia, September 21–29 (2004) 265–275. 
  22. [22] J.E. Lagnese and G. Leugering, Domain decomposition methods in optimal control of partial differential equations, International Series of Numerical Mathematics 148. Birkhäuser Verlag, Basel (2004). Zbl1059.49002MR2093789
  23. [23] M. Lenczner and G. Senouci-Bereski, Homogenization of electrical networks including voltage to voltage amplifiers. Math. Meth. Appl. Sci. 9 (1999) 899–932. Zbl0963.35014MR1702869
  24. [24] G. Leugering and E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Contr. Opt. 41 (2002) 164–180. Zbl1024.76009MR1920161
  25. [25] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer-Verlag (1971). Zbl0203.09001MR271512
  26. [26] V. Mazja and A. Slutsckij, Averaging of a differential operator on thick periodic grid. Math. Nachr. 133 (1987) 107–133. Zbl0646.34055
  27. [27] R. Orive and E. Zuazua, Finite difference approximation of homogenization for elliptic equation. Multiscale Model. Simul. 4 (2005) 36–87. Zbl1090.65126MR2164709
  28. [28] G.P. Panasenko, Asymptotic solutions of the elasticity theory system of equations for lattice and skeletal structures. Russian Academy Sci. Sbornik Math. 75 (1993) 85–110. Zbl0774.73010MR1166759
  29. [29] G.P. Panasenko, Homogenization of lattice-like domains. L-convergence. Reprint No. 178, Analyse numérique, Lyon Saint-Étienne (1994). Zbl0942.35022
  30. [30] T. Roubiček, Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, New York (1997). Zbl0880.49002MR1458067
  31. [31] J. Saint Jean Paulin and D. Cioranescu, Homogenization of Reticulated Structures, Applied Mathematical Sciences 136. Springer-Verlag, Berlin-New York (1999). Zbl0929.35002MR1676922
  32. [32] J. Saint Jean Paulin and H. Zoubairi, Optimal control and “strange term” for the Stokes problem in perforated domains. Portugaliac Mathematica 59 (2002) 161–178. Zbl1017.49005MR1907412
  33. [33] M. Vogelius, A homogenization result for planar, polygonal networks. RAIRO Modél. Math. Anal. Numér. 25 (1991) 483–514. Zbl0737.35126MR1108587
  34. [34] V.V. Zhikov, Weighted Sobolev spaces. Sbornik: Mathematics 189 (1998) 27–58. Zbl0919.46026MR1669639
  35. [35] V.V. Zhikov, On an extension of the method of two-scale convergence and its applications. Sbornik: Mathematics 191 (2000) 973–1014. Zbl0969.35048MR1809928
  36. [36] V.V. Zhikov, Homogenization of elastic problems on singular structures. Izvestija: Math. 66 (2002) 299–365. Zbl1043.35031
  37. [37] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). Zbl0838.35001MR1329546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.