A homogenization result for planar, polygonal networks

Michael Vogelius

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 4, page 483-514
  • ISSN: 0764-583X

How to cite

top

Vogelius, Michael. "A homogenization result for planar, polygonal networks." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.4 (1991): 483-514. <http://eudml.org/doc/193637>.

@article{Vogelius1991,
author = {Vogelius, Michael},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; networks},
language = {eng},
number = {4},
pages = {483-514},
publisher = {Dunod},
title = {A homogenization result for planar, polygonal networks},
url = {http://eudml.org/doc/193637},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Vogelius, Michael
TI - A homogenization result for planar, polygonal networks
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 4
SP - 483
EP - 514
LA - eng
KW - homogenization; networks
UR - http://eudml.org/doc/193637
ER -

References

top
  1. [1] D. N. ARNOLD, L. RIDGWAY SCOTT and M. VOGELIUS, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa, 15 (1988), pp. 169-192. Zbl0702.35208MR1007396
  2. [2] H. ATTOUCH and G. BUTTAZZO, Homogenization of reinforced periodic one-codimensional structures, Ann. Scuola Norm. Sup. Pisa, 14(1987), pp. 465-484. Zbl0654.73017MR951229
  3. [3] D. AZE and G. BUTTAZZO, Some remarks on the optimal design of periodically reinforced structures, RAIRO Model. Math. Anal. Numer., 23 (1989), pp. 53-61. Zbl0679.49005MR1015919
  4. [4] J. BRAMBLE and M. ZLAMAL, Triangular elements in the finite element method, Math. Comp., 24 (1970), pp. 809-820. Zbl0226.65073MR282540
  5. [5] G. BUTTAZZO and G. DAL MASO, Γ-limits of integral functionals, J. Analyse Math., 37 (1980), pp. 145-185. Zbl0446.49012MR583636
  6. [6] E. DEGIORGI and S. SPAGNOLO, Sulla convergenza degli integrali dell'energia per operatori ellitici del secundo ordine, Boll. U.M.I., 8 (1973), pp. 391-411. Zbl0274.35002MR348255
  7. [7] R. J. DUFFIN, Distributed and lumped networks, J. Math. Mech., 8 (1959), pp. 793-825. Zbl0092.20501MR106032
  8. [8] R. J. DUFFIN, Extremal length of a network, J. Math. Anal. Appl., 5 (1962), pp. 200-215. Zbl0107.43604MR143468
  9. [9] R. J. DUFFIN, Topology of series-parallel networks, J. Math. Anal. Appl., 10 (1965), pp. 303-318. Zbl0128.37002MR175809
  10. [10] R. J. DUFFIN, Estimating Dirichlet's integral and electrical conductance for systems which are not self-adjoint. Arch. Rat. Mech. Anal., 30 (1968), pp. 90-101. Zbl0159.40604MR228229
  11. [11] P. GRISVARD, Elliptic problems in Nonsmooth Domains, Pitman, Marshfield, MA, 1985. Zbl0695.35060MR775683
  12. [12] P.-O. JANSSON and G. GRIMWALL, Joule heat distribution in disordered resistor networks, J. Phys. D: Appl. Phys., 18 (1985), pp. 893-900. 
  13. [13] R. KÜNNEMANN, The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities. Comm. Math. Phys., 90 (1983), pp. 27-68. Zbl0523.60097MR714611
  14. [14] K. A. LURIE and A. V. CHERKAEV, G-closure of a set of anisotropically conducting media in the two dimensional case. J. Opt. Th. Appl., 42 (1984), pp. 283-304. Zbl0504.73060MR737972
  15. [15] K. A. LURIE and A. V. CHERKAEV, Exact estimates of the conductivity of composites formed by two materials taken in prescribed proportion. Proc. Roy. Soc. Edinburgh, 99 A (1984), pp. 71-87. Zbl0564.73079MR781086
  16. [16] F. MURAT, H-convergence, Mimeographed notes, Université d'Alger, 1978. 
  17. [17] F. MURAT and L. TARTAR, Calcul des variations et homogeneisation, In Les Méthodes de l'Homogénéization : Théorie et Applicationsen Physique ; proc. of summer school on homogenization, Breau-sans-Nappe, July 1983 ; Eyrolles, Paris, 1985, pp. 319-369. MR844873
  18. [18] J. A. NITSCHE and A. H. SCHATZ, Interior estimates for Ritz-Galerkun methods. Math. Comp., 28 (1974), pp. 937-958. Zbl0298.65071MR373325
  19. [19] G. PAPANICOLAOU and S. R. S. VARADHAN, Boundary value problems with rapidly oscillating random coefficients, Coll. Math. Societatis János Bólyai, #27, Esztergom, Hungary, pp. 835-873, North-Holland, Amsterdam, 1982. Zbl0499.60059MR712714
  20. [20] M. SODERBERG, P.-O. JANSSON and G. GRIMWALL, Effective medium theory for resistor networks in checkerboard geometres. J. Phys. A. Math. Gen., 18 (1985), pp. L633-L636. 
  21. [21] L. TARTAR, Estimations fines des coefficients homogénéisés, In Ennio De-Giorgi's Colloquium, P. Krée, ed., Pitman Press, London, 1985. Zbl0586.35004MR909716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.