Optimisation of time-scheduled regimen for anti-cancer drug infusion
Claude Basdevant; Jean Clairambault; Francis Lévi
- Volume: 39, Issue: 6, page 1069-1086
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Z. Agur, R. Arnon and B. Schechter, Effect of the dosing interval on myelotoxicity and survival in mice treated by cytarabine. Eur. J. Cancer 28A (1992) 1085–1090.
- [2] L.K. Andersen and M.C. Mackey, Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia. J. Theor. Biol. 209 (2001) 113–130.
- [3] J.F. Bonnans, J.C. Gilbert, C. Lemarechal and C.A. Sagastizabal, Numerical Optimization: Theoretical and Practical Aspects. Springer Universitext (2003). Zbl1014.65045MR1958119
- [4] N.A. Boughattas, F. Lévi, et al., Circadian Rhythm in Toxicities and Tissue Uptake of 1,2-diamminocyclohexane(trans-1)oxaloplatinum(II) in Mice. Cancer Research 49 (1989) 3362–3368.
- [5] N.A. Boughattas, B. Hecquet, C. Fournier, B. Bruguerolle, A. Trabelsi, K. Bouzouita, B. Omrane and F. Lévi, Comparative pharmacokinetics of oxaliplatin (L-OHP) and carboplatin (CBDCA) in mice with reference to circadian dosing time. Biopharmaceutics and drug disposition 15 (1994) 761–773.
- [6] N.F. Britton, N.A. Wright and J.D. Murray, A mathematical model for cell population kinetics in the intestine. J. Theor. Biol. 98 (1982) 531–541.
- [7] L. Canaple, T. Kazikawa and V. Laudet, The days and nights of cancer cells. Cancer Research 63 (2003) 7545–7552.
- [8] J. Clairambault, D. Claude, E. Filipski, T. Granda and F. Lévi, Toxicité et efficacité antitumorale de l’oxaliplatine sur l’ostéosarcome de Glasgow induit chez la souris : un modèle mathématique. Pathologie-Biologie 51 (2003) 212–215.
- [9] L. Cojocaru and Z.A. Agur, Theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci. 109 (1992) 85–97. Zbl0746.92012
- [10] B.F. Dibrov, M.A. Zhabotinski, Yu.A. Neyfakh, M.P. Orlova and L.I. Churikova, Mathematical model of cancer chemotherapy. Periodic schedules of of phase-specific cytotoxic agent administration increasing the selectivity of therapy. Math. Biosci. 73 (1985) 1–34. Zbl0565.92006
- [11] B.F. Dibrov, Resonance effect in self-renewing tissues. J. Theor. Biol. 192 (1998) 15–33.
- [12] L. Edelstein-Keshet, Mathematical Models in Biology. NY: McGraw-Hill (1988) 210–270. Zbl0674.92001
- [13] A.W. El-Kareh and T.W. Secomb, A mathematical model for cisplatin cellular pharmacodynamics. Neoplasia 5 (2004) 161–169.
- [14] S. Faivre, D. Chan, R. Salinas, B. Woynarowska and J.M. Woynarowski, DNA Single Strand Breaks and apoptosis induced by oxaliplatin in cancer cells. Biochemical Pharmacology 66 (2003) 225–237.
- [15] K.R. Fister and J.C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60 (2000) 1059–1072. Zbl0991.92014
- [16] L. Fu, H. Pellicano, J. Liu, P. Huang and C.C. Lee, The Circadian Gene Period2 Plays an Important Role in Tumor Suppression and DNA Damage Response In Vivo. Cell 111 (2002) 41–50.
- [17] L. Fu and C.C. Lee, The circadian clock: pacemaker and tumour suppressor. Nature Reviews 3 (2003) 351–361.
- [18] T.G. Granda, R.-M. D’Attino, E. Filipski, et al., Circadian optimisation of irinotecan and oxaliplatin efficacy in mice with Glasgow osteosarcoma. Brit. J. Cancer 86 (2002) 999–1005.
- [19] T.G. Granda, X.H. Liu, R. Smaaland, N. Cermakian, E. Filipski, P. Sassone-Corsi and F. Levi, Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumor. FASEB J. 19 (2005) 304.
- [20] M. Gyllenberg and G.F. Webb, Quiescence as an explanation of gompertzian tumor growth. Growth, Development and Aging 53 (1989) 25–33.
- [21] M. Gyllenberg and G.F. Webb, A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28 (1990) 671–694. Zbl0744.92026
- [22] M.H. Hastings, A.B. Reddy and E.S. Maywood, A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4 (2003) 649–661.
- [23] A. Iliadis and D. Barbolosi, Optimising drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Computers Biomed. Res. 33 (2000) 211–226.
- [24] A. Iliadis and D. Barbolosi, Optimising drug regimens in cancer chemotherapy: a simulation study using a PK-PD model. Computers Biol. Med. 31 (2001) 157–172.
- [25] M. Kimmel and A. Swierniak, Using control theory to make cancer chemotherapy beneficial from phase dependence and resistant to drug resistance. Technical report #7, Ohio State University, Nov. 2003, available on line at http://mbi.osu.edu/publications/techreport7.pdf (2003). Zbl1151.93310MR2175404
- [26] F. Lévi, G. Metzger, C. Massari and G. Milano, Oxaliplatin: Pharmacokinetics and Chronopharmacological Aspects. Clin. Pharmacokinet. 38 (2000) 1–21.
- [27] F. Lévi (Ed.), Cancer Chronotherapeutics. Special issue of Chronobiology International 19 #1 (2002).
- [28] T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda and H. Okamura, Control mechanism of the circadian clock for timing of cell division in vivo. Science 302 (5643) (2003) 255–259.
- [29] M.C. McKeage, T. Hsu, G. Haddad and B.C. Baguley, Nucleolar damage correlates with neurotoxicity induced by different platinum drugs. Br. J. Cancer 85 (2001) 1219–1225.
- [30] M. Mishima, G. Samimi, A. Kondo, X. Lin and S.B. Howell, The cellular pharmacology of oxaliplatin resistance. Eur. J. Cancer 38 (2002) 1405–1412.
- [31] C.S. Potten and M. Loeffler, Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110 (1990) 1001–1020.
- [32] U. Schibler, Circadian rhythms. Liver regeneration clocks on. Science 302 (5643) (2003) 234–235.
- [33] G. Swan, Role of optimal control theory in cancer chemotherapy. Math. Biosci. 101 (1990) 237–284. Zbl0702.92007
- [34] G.F. Webb, Resonance phenomena in cell population chemotherapy models. Rocky Mountain J. Math. 20 (1990) 1195–1216. Zbl0731.92011