Page 1 Next

Displaying 1 – 20 of 149

Showing per page

A beginner's guide to adaptive dynamics

Odo Diekmann (2003)

Banach Center Publications

The aim of these notes is to illustrate, largely by way of examples, how standard ecological models can be put into an evolutionary perspective in order to gain insight in the role of natural selection in shaping life history characteristics. We limit ourselves to phenotypic evolution under clonal reproduction (that is, we simply ignore the importance of genes and sex). Another basic assumption is that mutation occurs on a time scale which is long relative to the time scale of convergence...

A Cost-Effectiveness-Assessing Model of Vaccination for Varicella and Zoster

M. Comba, S. Martorano-Raimundo, E. Venturino (2012)

Mathematical Modelling of Natural Phenomena

A decision analytical model is presented and analysed to assess the effectiveness and cost-effectiveness of routine vaccination against varicella and herpes-zoster, or shingles. These diseases have as common aetiological agent the varicella-zoster virus (VZV). Zoster can more likely occur in aged people with declining cell-mediated immunity. The general concern is that universal varicella vaccination might lead to more cases of zoster: with more...

A model of cardiac tissue as an excitable medium with two interacting pacemakers having refractory time

Alexander Loskutov, Sergei Rybalko, Ekaterina Zhuchkova (2003)

Banach Center Publications

A quite general model of the nonlinear interaction of two impulse systems describing some types of cardiac arrhythmias is developed. Taking into account a refractory time the phase locking phenomena are investigated. Effects of the tongue splitting and their interweaving in the parametric space are found. The results obtained allow us to predict the behavior of excitable systems with two pacemakers depending on the type and intensity of their interaction and the initial phase.

A New Mathematical Model of Syphilis

F. A. Milner, R. Zhao (2010)

Mathematical Modelling of Natural Phenomena

The CDC launched the National Plan to Eliminate Syphilis from the USA in October 1999 [4]. In order to reach this goal, a good understanding of the transmission dynamics of the disease is necessary. Based on a SIRS model Breban et al.  [3] provided some evidence that supports the feasibility of the plan proving that no recurring outbreaks should occur for syphilis. We study in this work a syphilis model that includes partial...

Absorption in stochastic epidemics

Josef Štěpán, Jakub Staněk (2009)

Kybernetika

A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.

An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective

H. R. Thieme, A. Tridane, Y. Kuang (2008)

Mathematical Modelling of Natural Phenomena

A possible control strategy against the spread of an infectious disease is the treatment with antimicrobials that are given prophylactically to those that had contact with an infective person. The treatment continues until recovery or until it becomes obvious that there was no infection in the first place. The model considers susceptible, treated uninfected exposed, treated infected, (untreated) infectious, and recovered individuals. The overly optimistic assumptions are made that treated uninfected...

An Intracellular Delay-Differential Equation Model of the HIV Infection and Immune Control

T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, Y. Xu (2010)

Mathematical Modelling of Natural Phenomena

Previous work has shown that intracellular delay needs to be taken into account to accurately determine the half-life of free virus from drug perturbation experiments [1]. The delay also effects the estimated value for the infected T-cell loss rate when we assume that the drug is not completely effective [19]. Models of virus infection that include intracellular delay are more accurate representations of the biological data.
We analyze a non-linear model of the human immunodeficiency virus (HIV)...

Analysis of a Mathematical Model for the Molecular Mechanism of Fate Decision in Mammary Stem Cells

O. U. Kirnasovsky, Y. Kogan, Z. Agur (2008)

Mathematical Modelling of Natural Phenomena

Recently, adult stem cells have become a focus of intensive biomedical research, but the complex regulation that allows a small population of stem cells to replenish depleted tissues is still unknown. It has been suggested that specific tissue structures delimit the spaces where stem cells undergo unlimited proliferation (stem cell niche). In contrast, mathematical analysis suggests that a feedback control of stem cells on their own proliferation and differentiation (denoted Quorum Sensing) suffices...

Analysis of a Model with Multiple Infectious Stages and Arbitrarily Distributed Stage Durations

Y. Yang, D. Xu, Z. Feng (2008)

Mathematical Modelling of Natural Phenomena

Infectious diseases may have multiple infectious stages with very different epidemiological attributes, including infectivity and disease progression. These stages are often assumed to have exponentially distributed durations in epidemiological models. However, models that use the exponential distribution assumption (EDA) may generate biased and even misleading results in some cases. This discrepancy is particularly damaging if the models are employed to assist policy-makers in disease control...

Currently displaying 1 – 20 of 149

Page 1 Next