A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations

Louis Tebou

ESAIM: Control, Optimisation and Calculus of Variations (2008)

  • Volume: 14, Issue: 3, page 561-574
  • ISSN: 1292-8119

Abstract

top
First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman estimate [Ruiz, J. Math. Pures Appl. 71 (1992) 455–467], we address the same type of problem in an exterior domain for a locally damped semilinear wave equation. For both problems, our method of proof is constructive, and much simpler than those found in the literature. In particular, we improve in some way on earlier results by Dafermos, Haraux, Nakao, Slemrod and Zuazua.

How to cite

top

Tebou, Louis. "A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations." ESAIM: Control, Optimisation and Calculus of Variations 14.3 (2008): 561-574. <http://eudml.org/doc/245151>.

@article{Tebou2008,
abstract = {First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman estimate [Ruiz, J. Math. Pures Appl. 71 (1992) 455–467], we address the same type of problem in an exterior domain for a locally damped semilinear wave equation. For both problems, our method of proof is constructive, and much simpler than those found in the literature. In particular, we improve in some way on earlier results by Dafermos, Haraux, Nakao, Slemrod and Zuazua.},
author = {Tebou, Louis},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {hyperbolic equation; exponential decay; localized damping; Carleman estimates},
language = {eng},
number = {3},
pages = {561-574},
publisher = {EDP-Sciences},
title = {A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations},
url = {http://eudml.org/doc/245151},
volume = {14},
year = {2008},
}

TY - JOUR
AU - Tebou, Louis
TI - A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2008
PB - EDP-Sciences
VL - 14
IS - 3
SP - 561
EP - 574
AB - First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman estimate [Ruiz, J. Math. Pures Appl. 71 (1992) 455–467], we address the same type of problem in an exterior domain for a locally damped semilinear wave equation. For both problems, our method of proof is constructive, and much simpler than those found in the literature. In particular, we improve in some way on earlier results by Dafermos, Haraux, Nakao, Slemrod and Zuazua.
LA - eng
KW - hyperbolic equation; exponential decay; localized damping; Carleman estimates
UR - http://eudml.org/doc/245151
ER -

References

top
  1. [1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Opt. 30 (1992) 1024–1065. Zbl0786.93009MR1178650
  2. [2] M.E. Bradley and I. Lasiecka, Global decay rates for the solutions to a von Kármán plate without geometric conditions. J. Math. Anal. Appl. 181 (1994) 254–276. Zbl0806.35180MR1257968
  3. [3] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland (1973). Zbl0252.47055MR348562
  4. [4] H. Brezis, Analyse fonctionnelle. Théorie et Applications. Masson, Paris (1983). Zbl0511.46001MR697382
  5. [5] G. Chen, S.A. Fulling, F.J. Narcowich and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991) 266–301. Zbl0734.35009MR1089141
  6. [6] C.M. Dafermos, Asymptotic behaviour of solutions of evolution equations, in Nonlinear evolution equations, M.G. Crandall Ed., Academic Press, New-York (1978) 103–123. Zbl0499.35015MR513814
  7. [7] B. Dehman, Stabilisation pour l’équation des ondes semi-linéaire. Asymptotic Anal. 27 (2001) 171–181. Zbl1007.35005MR1852005
  8. [8] B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36 (2003) 525–551. Zbl1036.35033MR2013925
  9. [9] A. Doubova and A. Osses, Rotated weights in global Carleman estimates applied to an inverse problem for the wave equation. Inverse Problems 22 (2006) 265–296. Zbl1089.35085MR2194195
  10. [10] T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). Zbl1248.93031MR2383077
  11. [11] X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Contr. Opt. 46 (2007) 1578–1614. Zbl1143.93005MR2361985
  12. [12] A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations. J. Diff. Eq. 59 (1985) 145–154. Zbl0535.35006MR804885
  13. [13] A. Haraux, Semi-linear hyperbolic problems in bounded domains, in Mathematical Reports 3, Hardwood academic publishers (1987) . Zbl0875.35054MR1078761
  14. [14] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46 (1989) 245–258. Zbl0679.93063MR1021188
  15. [15] A. Haraux, Remarks on weak stabilization of semilinear wave equations. ESAIM: COCV 6 (2001) 553–560. Zbl0988.35029MR1849416
  16. [16] O.Yu. Imanuvilov, On Carleman estimates for hyperbolic equations. Asympt. Anal. 32 (2002) 185–220. Zbl1050.35046MR1993649
  17. [17] V. Komornik, Exact controllability and stabilization. The multiplier method. RAM, Masson & John Wiley, Paris (1994). Zbl0937.93003MR1359765
  18. [18] J. Lagnese, Control of wave processes with distributed control supported on a subregion. SIAM J. Control Opt. 21 (1983) 68–85. Zbl0512.93014MR688440
  19. [19] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential Integral Equations 6 (1993) 507–533. Zbl0803.35088MR1202555
  20. [20] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
  21. [21] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, Vol. 1, RMA 8. Masson, Paris (1988). Zbl0653.93002
  22. [22] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Springer-Verlag, New York-Heidelberg (1973). Zbl0251.35001MR350177
  23. [23] K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Opt. 35 (1997) 1574–1590. Zbl0891.93016MR1466917
  24. [24] F. Macià and E. Zuazua, On the lack of observability for wave equations: a gaussian beam approach. Asymptot. Anal. 32 (2002) 1–26. Zbl1024.35062MR1943038
  25. [25] P. Martinez, Ph.D. thesis, University of Strasbourg, France (1998). 
  26. [26] P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complut. 12 (1999) 251–283. Zbl0940.35034MR1698906
  27. [27] M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. Math. 95 (1996) 25–42. Zbl0860.35072MR1418287
  28. [28] M. Nakao, Global existence for semilinear wave equations in exterior domains, in Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), Nonlinear Anal. 47 (2001) 2497–2506. Zbl1042.35595MR1971655
  29. [29] M. Nakao, Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation. J. Diff. Eq. 190 (2003) 81–107. Zbl1024.35080MR1970957
  30. [30] M. Nakao and I.H. Jung, Energy decay for the wave equation in exterior domains with some half-linear dissipation. Differential Integral Equations 16 (2003) 927–948. Zbl1035.35013MR1988953
  31. [31] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44. Springer-Verlag, New York (1983). Zbl0516.47023MR710486
  32. [32] G. Perla Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: an improvement. Appl. Math. Lett. 16 (2003) 531–534. Zbl1040.74022MR1983725
  33. [33] A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 71 (1992) 455–467. Zbl0832.35084MR1191585
  34. [34] D.L. Russell, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, in Differential games and control theory (Proc. NSF—CBMS Regional Res. Conf., Univ. Rhode Island, Kingston, R.I., 1973) Dekker, New York. Lect. Notes Pure Appl. Math. 10, Dekker, New York (1974) 291–319. Zbl0308.93007MR467472
  35. [35] M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Royal Soc. Edinburgh Sect. A 113 (1989) 87–97. Zbl0699.35023MR1025456
  36. [36] D. Tataru, The X θ s spaces and unique continuation for solutions to the semilinear wave equation. Comm. Partial Differential Equations 21 (1996) 841–887. Zbl0853.35017MR1391526
  37. [37] L.R. Tcheugoué Tébou, Estimations d’énergie pour l’équation des ondes avec un amortissement nonlinéaire localisé. C. R. Acad. Paris, Sér. I 325 (1997) 1175–1179. Zbl0894.35071MR1490120
  38. [38] L.R. Tcheugoué Tébou, On the decay estimates for the wave equation with a local degenerate or nondegenerate dissipation. Portugal. Math. 55 (1998) 293–306. Zbl0918.35079MR1647163
  39. [39] L.R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping. J. Diff. Eq. 145 (1998) 502–524 Zbl0916.35069MR1620983
  40. [40] L.R. Tcheugoué Tébou, Well-posedness and energy decay estimates for the damped wave equation with L r localizing coefficient. Comm. Partial Differential Equations 23 (1998) 1839–1855. Zbl0918.35078MR1641733
  41. [41] L.R. Tcheugoué Tébou, A direct method for the stabilization of some locally damped semilinear wave equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 859–864. Zbl1096.35022MR2224636
  42. [42] J. Vancostenoble, Stabilisation non monotone de systèmes vibrants et Contrôlabilité. Ph.D. thesis, University of Rennes, France (1998). 
  43. [43] J. Vancostenoble, Weak asymptotic decay for a wave equation with gradient dependent damping. Asymptot. Anal. 26 (2001) 1–20. Zbl0973.35131MR1829142
  44. [44] X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains, in Proceedings of the Eleventh International Conference on Hyperbolic Problems: Theory, Numerics and Applications, Lyon (2006) (to appear). Zbl1134.74030MR2321657
  45. [45] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Differential Equations 15 (1990) 205–235. Zbl0716.35010MR1032629
  46. [46] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 15 (1990) 205–235. Zbl0716.35010MR1032629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.