Stabilization and control for the subcritical semilinear wave equation

Belhassen Dehman; Gilles Lebeau; Enrique Zuazua

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 4, page 525-551
  • ISSN: 0012-9593

How to cite

top

Dehman, Belhassen, Lebeau, Gilles, and Zuazua, Enrique. "Stabilization and control for the subcritical semilinear wave equation." Annales scientifiques de l'École Normale Supérieure 36.4 (2003): 525-551. <http://eudml.org/doc/82609>.

@article{Dehman2003,
author = {Dehman, Belhassen, Lebeau, Gilles, Zuazua, Enrique},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {exponential decay; finite energy solutions; controllability},
language = {eng},
number = {4},
pages = {525-551},
publisher = {Elsevier},
title = {Stabilization and control for the subcritical semilinear wave equation},
url = {http://eudml.org/doc/82609},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Dehman, Belhassen
AU - Lebeau, Gilles
AU - Zuazua, Enrique
TI - Stabilization and control for the subcritical semilinear wave equation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 4
SP - 525
EP - 551
LA - eng
KW - exponential decay; finite energy solutions; controllability
UR - http://eudml.org/doc/82609
ER -

References

top
  1. [1] Alinhac S., Gérard P., Opérateurs pseudo-différentiels et théorème de Nash–Moser, Savoirs Actuels, InterEditions/Editions du CNRS, 1991. Zbl0791.47044MR1172111
  2. [2] Bardos C., Lebeau G., Rauch J., Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary, SIAM J. Control Optim.305 (1992) 1024-1065. Zbl0786.93009MR1178650
  3. [3] Chemin J.Y., Fluides parfaits incompressibles, Astérisque209 (1995). Zbl0829.76003MR1340046
  4. [4] Dehman B., Stabilisation pour l'équation des ondes semilinéaire, Asymptotic Anal.27 (2001) 171-181. Zbl1007.35005MR1852005
  5. [5] Gérard P., Microlocal defect measures, Comm. Partial Differential Equations16 (1991) 1761-1794. Zbl0770.35001MR1135919
  6. [6] Gérard P., Oscillation and concentration effects in semilinear dispersive wave equations, J. Funct. Anal.41 (1) (1996) 60-98. Zbl0868.35075MR1414374
  7. [7] Ginibre J., Velo G., The global Cauchy problem for the nonlinear Klein–Gordon equation, Math. Z.189 (1985) 487-505. Zbl0549.35108MR786279
  8. [8] Grillakis M., Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. Math.132 (1990) 485-509. Zbl0736.35067MR1078267
  9. [9] Grillakis M., Regularity for the wave equation with critical nonlinearity, Comm. Pure Appl. Math.45 (1992) 749-774. Zbl0785.35065MR1162370
  10. [10] Haraux A., Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations59 (1985) 145-154. Zbl0535.35006MR804885
  11. [11] Jörgens K., Das Ansfangwertproblem im grossen für eine klasse nichtlinear wellengleichungen, Math. Z.77 (1961) 295-308. Zbl0111.09105MR130462
  12. [12] Lebeau G., Équations des ondes amorties, in: Boutet de Monvel A., Marchenko V. (Eds.), Algebraic and Geometric Methods in Math. Physics, 1996, pp. 73-109. Zbl0863.58068MR1385677
  13. [13] Lions J.-L., Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tome 1, RMA, 8, Masson, Paris, 1988. Zbl0653.93002
  14. [14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
  15. [15] Meyer Y., Ondelettes et opérateurs, I & II, Hermann, Paris, 1990. Zbl0694.41037MR1085487
  16. [16] Nakao M., Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math. Z.4 (2001) 781-797. Zbl1002.35079MR1872573
  17. [17] Rauch J., Taylor M., Exponential decay of solutions to symmetric hyperbolic equations in bounded domains, Indiana J. Math.24 (1974) 79-86. Zbl0281.35012MR361461
  18. [18] Robbiano L., Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Differential Equations16 (1991) 789-800. Zbl0735.35086MR1113107
  19. [19] Ruiz A., Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl.71 (1992) 455-467. Zbl0832.35084MR1191585
  20. [20] Smith H., Sogge C., On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc.8 (1995) 879-916. Zbl0860.35081MR1308407
  21. [21] Shatah J., Struwe M., Regularity results for nonlinear wave equations, Ann. Math.138 (1993) 503-518. Zbl0836.35096MR1247991
  22. [22] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equation, Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
  23. [23] Tataru D., The Xθs spaces and unique continuation for solutions to the semilinear wave equation, Comm. Partial Differential Equations2 (1996) 841-887. Zbl0853.35017
  24. [24] Zhang X., Explicit observability estimates for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Cont. Optim.3 (2000) 812-834. Zbl0982.35059MR1786331
  25. [25] Zuazua E., Exponential decay for semilinear wave equations with localized damping, Comm. Partial Differential Equations15 (2) (1990) 205-235. Zbl0716.35010MR1032629
  26. [26] Zuazua E., Exact controllability for the semilinear wave equation, J. Math. Pures Appl.69 (1) (1990) 33-55. Zbl0638.49017MR1054122
  27. [27] Zuazua E., Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl.70 (1992) 513-529. Zbl0765.35010MR1146833
  28. [28] Zuazua E., Exact controllability for semilinear wave equations, Ann. Inst. Henri Poincaré10 (1) (1993) 109-129. Zbl0769.93017MR1212631

Citations in EuDML Documents

top
  1. Ademir Fernando Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping
  2. Ademir Fernando Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping
  3. Camille Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval
  4. Louis Tebou, A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations
  5. Camille Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold
  6. Louis Tebou, A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.