Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis; Charalambos Makridakis

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2004)

  • Volume: 38, Issue: 2, page 261-289
  • ISSN: 0764-583X

Abstract

top
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

How to cite

top

Akrivis, Georgios, and Makridakis, Charalambos. "Galerkin time-stepping methods for nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.2 (2004): 261-289. <http://eudml.org/doc/245171>.

@article{Akrivis2004,
abstract = {We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.},
author = {Akrivis, Georgios, Makridakis, Charalambos},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear parabolic equations; local Lipschitz condition; continuous and discontinuous Galerkin methods; a priori error analysis; monotone operators; discontinuous and continuous Galerkin methods; space-time finite element; time discretization; numerical examples},
language = {eng},
number = {2},
pages = {261-289},
publisher = {EDP-Sciences},
title = {Galerkin time-stepping methods for nonlinear parabolic equations},
url = {http://eudml.org/doc/245171},
volume = {38},
year = {2004},
}

TY - JOUR
AU - Akrivis, Georgios
AU - Makridakis, Charalambos
TI - Galerkin time-stepping methods for nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 2
SP - 261
EP - 289
AB - We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
LA - eng
KW - nonlinear parabolic equations; local Lipschitz condition; continuous and discontinuous Galerkin methods; a priori error analysis; monotone operators; discontinuous and continuous Galerkin methods; space-time finite element; time discretization; numerical examples
UR - http://eudml.org/doc/245171
ER -

References

top
  1. [1] G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73 (2004) 613–635. Zbl1045.65079
  2. [2] G. Akrivis and C. Makridakis, Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002). 
  3. [3] G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477. Zbl0896.65066
  4. [4] G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521–541. Zbl0936.65118
  5. [5] A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255–274. Zbl0673.65070
  6. [6] J.H. Bramble and P.H. Sammon, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655–677. Zbl0476.65072
  7. [7] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. Zbl0732.65093
  8. [8] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. Zbl0835.65116
  9. [9] K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325. Zbl0909.65063
  10. [10] D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35–54. Zbl0768.65065
  11. [11] P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928. Zbl0434.65091
  12. [12] O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499. Zbl0896.65068
  13. [13] O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807. Zbl0934.65110
  14. [14] O. Karakashian and C. Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear). Zbl1057.65066MR2085403
  15. [15] C. Makridakis and I. Babuška, On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389–401. Zbl0873.65095
  16. [16] C. Makridakis and R.H. Nochetto, A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002). 
  17. [17] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907–928. Zbl0826.65091
  18. [18] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). Zbl0884.65097MR1479170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.