On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments
ESAIM: Probability and Statistics (2005)
- Volume: 9, page 307-322
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topFerger, Dietmar. "On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments." ESAIM: Probability and Statistics 9 (2005): 307-322. <http://eudml.org/doc/245175>.
@article{Ferger2005,
abstract = {Let $F_n$ be the empirical distribution function (df) pertaining to independent random variables with continuous df $F$. We investigate the minimizing point $\hat\{\tau \}_n$ of the empirical process $F_n - F_0$, where $F_0$ is another df which differs from $F$. If $F$ and $F_0$ are locally Hölder-continuous of order $\alpha $ at a point $\tau $ our main result states that $n^\{1/\alpha \}(\hat\{\tau \}_n - \tau )$ converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation and the drift-function are of the type $|t|^\{\alpha \}$.},
author = {Ferger, Dietmar},
journal = {ESAIM: Probability and Statistics},
keywords = {rescaled empirical process; argmin-CMT; Poisson-process; weak convergence in $D(\mathbb \{R\})$; Rescaled empirical process; weak convergence in },
language = {eng},
pages = {307-322},
publisher = {EDP-Sciences},
title = {On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments},
url = {http://eudml.org/doc/245175},
volume = {9},
year = {2005},
}
TY - JOUR
AU - Ferger, Dietmar
TI - On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments
JO - ESAIM: Probability and Statistics
PY - 2005
PB - EDP-Sciences
VL - 9
SP - 307
EP - 322
AB - Let $F_n$ be the empirical distribution function (df) pertaining to independent random variables with continuous df $F$. We investigate the minimizing point $\hat{\tau }_n$ of the empirical process $F_n - F_0$, where $F_0$ is another df which differs from $F$. If $F$ and $F_0$ are locally Hölder-continuous of order $\alpha $ at a point $\tau $ our main result states that $n^{1/\alpha }(\hat{\tau }_n - \tau )$ converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation and the drift-function are of the type $|t|^{\alpha }$.
LA - eng
KW - rescaled empirical process; argmin-CMT; Poisson-process; weak convergence in $D(\mathbb {R})$; Rescaled empirical process; weak convergence in
UR - http://eudml.org/doc/245175
ER -
References
top- [1] P. Billingsley, Convergence of probability measures. Wiley, New York (1968). Zbl0172.21201MR233396
- [2] Z.W. Birnbaum and R. Pyke, On some distributions related to the statistic . Ann. Math. Statist. 29 (1958) 179–187. Zbl0089.14803
- [3] Z.W. Birnbaum and F.H. Tingey, One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22 (1951) 592–596. Zbl0044.14601
- [4] F.P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari 4 (1933) 327–350. Zbl0007.21802
- [5] J. Donsker, Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952) 277–281. Zbl0046.35103
- [6] R.M. Dudley, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966) 109–126. Zbl0178.52502
- [7] R.M. Dudley, Measures on nonseparable metric spaces. Illinois J. Math. 11 (1967) 449–453. Zbl0152.24501
- [8] R.M. Dudley, Uniform central limit theorems. Cambridge University Press, New York (1999). Zbl0951.60033MR1720712
- [9] M. Dwass, On several statistics related to empirical distribution functions. Ann. Math. Statist. 29 (1958) 188–191. Zbl0089.14804
- [10] R. Dykstra and Ch. Carolan, The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul. 63 (1999) 47–58. Zbl0946.65001
- [11] D. Ferger, The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist. 51 (1995) 155–157. Zbl0934.62017
- [12] D. Ferger, Analysis of change-point estimators under the null hypothesis. Bernoulli 7 (2001) 487–506. Zbl1006.62022
- [13] D. Ferger, A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica 58 (2004) 83–96. Zbl1090.60032
- [14] D. Ferger, Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005).
- [15] V. Glivenko, Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari 4 (1933) 92–99. Zbl0006.17403
- [16] P. Groneboom, Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields 81 (1989) 79–109.
- [17] P. Groneboom and J.A. Wellner, Computing Chernov’s distribution. J. Comput. Graphical Statist. 10 (2001) 388–400.
- [18] J. Hoffman-Jørgensen, Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984). Zbl0919.60003MR1217966
- [19] I.A. Ibragimov and R.Z. Has’minskii, Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981). Zbl0467.62026
- [20] O. Kallenberg, Foundations of Modern Probability. Springer-Verlag, New York (1999). Zbl0892.60001MR1876169
- [21] K. Knight, Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1–22.
- [22] A.N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933) 83–91. Zbl0006.17402
- [23] N.H. Kuiper, Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist. 30 (1959) 251–252. Zbl0119.15003
- [24] T. Lindvall, Weak convergence of probability measures and random functions in the function space . J. Appl. Prob. 10 (1973) 109–121. Zbl0258.60008
- [25] P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. Zbl0713.62021
- [26] G.Ch. Pflug, On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123–130.
- [27] G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley, New York (1986). Zbl1170.62365MR838963
- [28] N.V. Smirnov, Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk. 10 (1944) 179–206. Zbl0063.07087
- [29] L. Takács, Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967). Zbl0376.60016
- [30] A.W. van der Vaart and J.A. Wellner, Weak convergence of empirical processes. Springer-Verlag, New York (1996). Zbl0862.60002MR1385671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.