Transport in a molecular motor system
Michel Chipot; Stuart Hastings; David Kinderlehrer
- Volume: 38, Issue: 6, page 1011-1034
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Ajdari and J. Prost, Mouvement induit par un potentiel périodique de basse symétrie : diélectrophorèse pulse. C. R. Acad. Sci. Paris II 315 (1992) 1653.
- [2] R.D. Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276 (1997) 917–922.
- [3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. Zbl0968.76069
- [4] M. Chipot, D. Kinderlehrer and M. Kowalczyk, A variational principle for molecular motors. Meccanica 38 (2003) 505–518. Zbl1032.92005
- [5] C. Doering, B. Ermentrout and G. Oster, Rotary DNA motors. Biophys. J. 69 (1995) 2256–2267.
- [6] J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in Proc. PASI 2003 (to appear). Zbl1064.35065MR2091497
- [7] D.D. Hackney, The kinetic cycles of myosin, kinesin, and dynein. Ann. Rev. Physiol. 58 (1996) 731–750.
- [8] S. Hastings and D. Kinderlehrer, Remarks about diffusion mediated transport: thinking about motion in small systems. (to appear). Zbl1099.35005MR2159989
- [9] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc. (2001).
- [10] A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957) 255–318.
- [11] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. Zbl0915.35120
- [12] D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet. Arch. Rat. Mech. Anal. 161 (2002) 149–179. Zbl1065.76183
- [13] D. Kinderlehrer and N. Walkington, Approximation of parabolic equations based upon Wasserstein’s variational principle. ESAIM: M2AN 33 (1999) 837–852. Zbl0936.65121
- [14] J.S. Muldowney, Compound matrices and ordinary differential equations. Rocky Mountain J. Math. 20 (1990) 857–872. Zbl0725.34049
- [15] Y. Okada and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283 (1999) 19.
- [16] Y. Okada and N. Hirokawa, Mechanism of the single headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, in Proc. Nat. Acad. Sciences 7 (2000) 640–645.
- [17] F. Otto, Dynamics of labyrinthine pattern formation: a mean field theory. Arch. Rat. Mech. Anal. 141 (1998) 63–103. Zbl0905.35068
- [18] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE 26 (2001) 101–174. Zbl0984.35089
- [19] P. Palffy-Muhoray, T. Kosa and E. Weinan, Dynamics of a light driven molecular motor. Mol. Cryst. Liq. Cryst. 375 (2002) 577–591.
- [20] A. Parmeggiani, F. Jülicher, A. Ajdari and J. Prost, Energy transduction of isothermal ratchets: generic aspects and specific examples close and far from equilibrium. Phys. Rev. E 60 (1999) 2127–2140.
- [21] C.S. Peskin, G.B. Ermentrout and G.F. Oster, The correlation ratchet: a novel mechanism for generating directed motion by ATP hydrolysis, in Cell Mechanics and Cellular Engineering, V.C Mow et al. Eds., Springer, New York (1995).
- [22] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J. (1967). Zbl0153.13602MR219861
- [23] P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361 (2002) 57–265. Zbl1001.82097
- [24] M. Schliwa, Molecular Motors. Wiley-VCH Verlag, Wennheim (2003).
- [25] B. Schwarz, Totally positive differential systems. Pacific J. Math. 32 (1970) 203–230. Zbl0193.04501
- [26] A. Tudorascu, A one phase Stefan problem via Monge-Kantorovich theory. CNA Report 03-CNA-007.
- [27] R.D. Vale and R.A. Milligan, The way things move: looking under the hood of motor proteins. Science 288 (2000) 88–95.
- [28] C. Villani, Topics in optimal transportation, Providence. AMS Graduate Studies in Mathematics 58 (2003). Zbl1106.90001MR1964483
- [29] E. Zeidler, Nonlinear functional analysis and its applications. I Springer, New York (1986). Zbl0583.47050MR816732