Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays
Frank Woittennek; Joachim Rudolph[1]
- [1] Institut fur Regelungs- und Steuerungstheorie, Technische Universität Dresden, Mommsenstr. 13, 01062 Dresden, Germany
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 419-435
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topWoittennek, Frank, and Rudolph, Joachim. "Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 419-435. <http://eudml.org/doc/245219>.
@article{Woittennek2003,
abstract = {Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s operational calculus. The method is illustrated through an application to a model of a Timoshenko beam, which is clamped on a rotating disk and carries a load at its free end.},
affiliation = {Institut fur Regelungs- und Steuerungstheorie, Technische Universität Dresden, Mommsenstr. 13, 01062 Dresden, Germany},
author = {Woittennek, Frank, Rudolph, Joachim},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {flatness; motion planning; linear hyperbolic PDE; finite distributed delays; Timoshenko beam},
language = {eng},
pages = {419-435},
publisher = {EDP-Sciences},
title = {Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays},
url = {http://eudml.org/doc/245219},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Woittennek, Frank
AU - Rudolph, Joachim
TI - Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 419
EP - 435
AB - Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s operational calculus. The method is illustrated through an application to a model of a Timoshenko beam, which is clamped on a rotating disk and carries a load at its free end.
LA - eng
KW - flatness; motion planning; linear hyperbolic PDE; finite distributed delays; Timoshenko beam
UR - http://eudml.org/doc/245219
ER -
References
top- [1] M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and examples. Internat. J. Control 61 (1995) 1327-1361. Zbl0838.93022MR1613557
- [2] M. Fliess, Ph. Martin, N. Petit and P. Rouchon, Commande de l’équation des télégraphistes et restauration active d’un signal. Traitement du Signal 15 (1998) 619-625. Zbl1001.93032
- [3] M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. (URL: http://www.emath.fr/COCV/). Zbl0908.93013MR1644427
- [4] M. Fliess and H. Mounier, Tracking control and -freeness of infinite dimensional linear systems, edited by G. Picci and D.S. Gilliam, Dynamical Systems, Control, Coding, Computer Vision. Birkhäuser (1999) 45-68. Zbl0918.93010MR1684835
- [5] M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controllability and motion planning for linear delay systems with an application to a flexible rod, in Proc. 34th IEEE Conference on Decision and Control. New Orleans (1995) 2046-2051.
- [6] M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Systèmes linéaires sur les opérateurs de Mikusiński et commande d’une poutre flexible. ESAIM Proc. 2 (1997) 183-193. (http://www.emath.fr/proc). Zbl0898.93018
- [7] M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controlling the transient of a chemical reactor: A distributed parameter approach, in Proc. Computational Engineering in Systems Application IMACS Multiconference, (CESA’98). Hammamet, Tunisia (1998). Zbl0906.73046
- [8] F. John, Partial Differential Equations, 4th Edition. Springer-Verlag, New York (1991). MR1185075
- [9] B. Laroche, Ph. Martin and P. Rouchon, Motion planning for the heat equation. Int. J. Robust Nonlinear Control 10 (2000) 629-643. Zbl1022.93025MR1776232
- [10] A.F. Lynch and J. Rudolph, Flachheitsbasierte Randsteuerung parabolischer Systeme mit verteilten Parametern. Automatisierungstechnik 48 (2000) 478-486.
- [11] J. Mikusiński, Sur les équations différentielles du calcul opératoire et leurs applications aux équations aux dérivées partielles. Stud. Math. 12 (1951) 227-270. Zbl0044.12701MR46550
- [12] J. Mikusiński, Operational Calculus, Vol. 1. Pergamon, Oxford & PWN, Warszawa (1983). Zbl0532.44003MR737380
- [13] J. Mikusiński and Th.K. Boehme, Operational Calculus, Vol. 2. Pergamon, Oxford & PWN, Warszawa (1987). Zbl0643.44005MR902363
- [14] H. Mounier, J. Rudolph, M. Petitot and M. Fliess, A flexible rod as a linear delay system, in Proc. 3rd European Control Conference. Rome, Italy (1995) 3676-3681.
- [15] N. Petit and P. Rouchon, Motion planning for heavy chain systems. SIAM J. Control Optim. 40 (2001) 275-495. Zbl0967.93073MR1806175
- [16] N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control AC-47 (2002) 594-609. MR1893517
- [17] I.G. Petrovskij, Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen. Mat. Sb. 2 (1937) 815-866. Zbl0018.40503JFM63.0466.03
- [18] R. Rothfuß, J. Rudolph and M. Zeitz, Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik 45 (1997) 517-525.
- [19] W. Rudin, Real and Complex Analysis, 3rd Edition. McGraw-Hill (1987). Zbl0925.00005MR924157
- [20] J. Rudolph, Randsteuerung von Wärmetauschern mit örtlich verteilten Parametern: Ein flachheitsbasierter Zugang. Automatisierungstechnik 48 (2000) 399-406.
- [21] J. Rudolph and F. Woittennek, Flachheitsbasierte Steuerung eines Timoshenko-Balkens. Z. Angew. Math. Mech. 83 (2003) 119-127. Zbl1090.74033MR1960115
- [22] J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part one. Comp. Meths. Appl. Mech. 49 (1985) 55-70. Zbl0583.73037
- [23] K. Yosida, Operational Calculus. Springer-Verlag (1984). Zbl0542.44001MR752699
- [24] K. Yuan, Control of slew maneuver of a flexible beam mounted non-radially on a rigid hub: A geometrically exact modelling approach, Vol. 204 (1997) 795-806. Zbl1235.74204MR1607161
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.