Controllability and observability of linear delay systems : an algebraic approach

M. Fliess; H. Mounier

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 301-314
  • ISSN: 1292-8119

How to cite

top

Fliess, M., and Mounier, H.. "Controllability and observability of linear delay systems : an algebraic approach." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 301-314. <http://eudml.org/doc/90525>.

@article{Fliess1998,
author = {Fliess, M., Mounier, H.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {module theory; controllability; observability; delay systems},
language = {eng},
pages = {301-314},
publisher = {EDP Sciences},
title = {Controllability and observability of linear delay systems : an algebraic approach},
url = {http://eudml.org/doc/90525},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Fliess, M.
AU - Mounier, H.
TI - Controllability and observability of linear delay systems : an algebraic approach
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 301
EP - 314
LA - eng
KW - module theory; controllability; observability; delay systems
UR - http://eudml.org/doc/90525
ER -

References

top
  1. [1] Z. Bartosiewicz: Approximate controllability of neutral systems with delays in control, J. Diff. Eq., 51, 1984, 295-325. Zbl0487.93010MR735203
  2. [2] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter: Representation and Control of Infinite Dimensional Systems, 1, 2, Birkhäuser, Boston, 1992-1993. Zbl0790.93016MR2273323
  3. [3] K.P.M. Bhat, H.N. Koivo: Modal characterizations of controllability and observability for time-delay systems, IEEE Trans. Automat. Contr., 21, 1976, 292-293. Zbl0325.93005MR424297
  4. [4] H. Bourlès, M. Fliess: Finite poles and zeros of linear systems: an intrinsic approach, Internat J. Control, 68, 1997, 897-922. Zbl1034.93009MR1689711
  5. [5] J.W. Brewer, J.W. Bunce, F.S. Van Vleck: Linear Systems over Commutative Rings, Marcel Dekker, New York, 1986. Zbl0607.13001MR839186
  6. [6] D.A. Buchsbaum, D. Eisenbud: What makes a complex exact?J. Alg., 25, 1973, 259-268. Zbl0264.13007MR314819
  7. [7] C.I. Byrnes: On the control of certain deterministic, infinite-dimensional systems by algebro-geometric techniques, Amer. J. Math., 100, 1978, 1333-1381. Zbl0406.93017MR522703
  8. [8] R.M. Cohn: A difference-differential basis theorem, Canad. J. Math., 22, 1970, 1224-1237. Zbl0206.05104MR274428
  9. [9] D. Eisenbud: Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, New York, 1995. Zbl0819.13001MR1322960
  10. [10] M. Fliess: Some basic structural properties of generalized linear systems, Systems Control Lett., 15, 1990, 391-396. Zbl0727.93024MR1084580
  11. [11] M. Fliess: A remark on Willems' trajectory characterization of linear controllability, Systems Control Lett., 19, 1992, 43-45. Zbl0765.93003MR1170986
  12. [12] M. Fliess: Reversible linear and non linear discrete time dynamics, IEEE Trans. Automat. Contr., 37, 1992, 1144-1153. Zbl0764.93058MR1178584
  13. [13] M. Fliess: Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, Linear Alg. Appl., 203-204, 1994, 429-442. Zbl0802.93010MR1275520
  14. [14] M. Fliess, H. Bourlès: Discussing some examples of linear systems interconnections, Systems Control Lett., 27, 1996, 1-7. Zbl0877.93064MR1375906
  15. [15] M. Fliess, R. Hotzel: Sur les systèmes linéaires à dérivation non entière, C.R. Acad. Sci. Paris II, 324, 1997, 99-105. Zbl0870.93024
  16. [16] M. Fliess, H. Mounier: Quelques propriétés structurelles des systèmes linéaires à retards constants, C. R. Acad. Sci. Paris I, 319, 1994, 289-294. Zbl0805.93001MR1288420
  17. [17] M. Fliess, H. Mounier: Interpretation and comparison of various types of delay system controllabilities, In Proc. IFAC Conference System, Structure and Control, Nantes, 1995, 330-335. 
  18. [18] E. Fornasini, M.E. Valcher: A polynomial matrix approach to the behavioral analysis of nd systems, In 3rd European Control Conference Proc., Rome, 1995, 1757-1762. 
  19. [19] H. Glüsing-Lüerβen: A behavioral approach to delay differential systems, SIAM J. Contr. Opt., 35, 1997, 480-499. Zbl0876.93022MR1436634
  20. [20] A. Grothendieck, J.A. Dieudonné: Eléments de géométrie algébrique I, Springer-Verlag, Berlin1971. Zbl0203.23301
  21. [21] R. Hartshorne: Algebraic Geometry, Springer-Verlag, NewYork, 1977. Zbl0367.14001MR463157
  22. [22] R.E. Kalman, P.L. Falb, M.A. Arbib: Topics in Mathematical Systems Theory, McGraw-Hill, New York, 1969. Zbl0231.49001MR255260
  23. [23] E.W. Kamen: On an algebraic theory of systems defined by convolution operators, Math. Syst. Theory, 9, 1975, 57-74. Zbl0318.93003MR395953
  24. [24] E.W. Kamen: An operator theory of linear functional differential equations, J. Diff. Eq., 27, 1978, 274-297. Zbl0365.34080MR480283
  25. [25] E.W. Kamen, P.P. Khargonekar, A. Tannenbaum: Proper stable Bezout factorization and feedback control of linear time-delay systems, Internat. J. Control, 43, 1986, 837-857. Zbl0599.93047MR828360
  26. [26] T.Y. Lam: Serre's Conjecture, Springer-Verlag, Berlin, 1978. Zbl0373.13004MR485842
  27. [27] S. Lang: Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1993. Zbl0848.13001MR197234
  28. [28] E.B. Lee, S. Neftci, A. Olbrot: Canonical forms for time delay systems, IEEE Trans. Automat. Contr., 27, 1982, 128-132. Zbl0469.93027MR673080
  29. [29] E.B. Lee, A. Olbrot: Observability and related structural results for linear hereditary systems, Internat. I. Control, 34, 1981, 1061-1078. Zbl0531.93015MR643872
  30. [30] A. Manitius, R. Triggiani: Function space controllability of retarded systems: a derivation from abstract operator conditions, SIAM J. Contr. Opt., 16, 1978, 599-645. Zbl0442.93009MR482505
  31. [31] A.S. Morse: Ring models for delay-differential systems, Automatica, 12, 1976, 529-531. Zbl0345.93023MR437162
  32. [32] H. Mounier: Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques, Thèse, Université Paris-Sud, Orsay, 1995. 
  33. [33] H. Mounier: Algebraic interpretations of the spectral controllability of a linear delay system, Forum Math., 10, 1998, 39-58. Zbl0891.93014MR1490137
  34. [34] H. Mounier: Stabilization of a class of linear delay systems, Math. Comp. Sim., 45, 1998, 329-338. Zbl1017.93514MR1622411
  35. [35] H. Mounier, J. Rudolph, M. Fliess, P. Rouchon: Tracking control of a vibrating string with an interior mass viewed as a delay system, ESAIM: Control Optimisation and Calculus of Variations, http://www.emath.fr/cocv/, 3, 1998, 315-321. Zbl0906.73046MR1644431
  36. [36] H. Mounier, P. Rouchon, J. Rudolph: Some examples of linear delay systems, RAIRO-JESA-APII, 31, 1997, 911-925. 
  37. [37] H. Mounier, P. Rouchon, J. Rudolph: π-freeness of a long electric line, Comput. Eng. in Syst. Appl. IMACS Multiconference, Lille, 1996, 28-29. 
  38. [38] D.A. O'Connor, T.J. Tarn: On the function space controllability of linear neutral systems, SIAM J. Contr. Opt., 21, 1983, 306-329. Zbl0509.93014MR690229
  39. [39] P. Picard, J.F. Lafay: Further results on controllability of linear systems with delays, In European Control Conference Proc., Rome, 1995, 3313-3318. 
  40. [40] D. Quillen: Projective modules over polynomial rings, Inv. Math., 36, 1976, 167-171. Zbl0337.13011MR427303
  41. [41] P. Rocha, J. Willems: Behavioral controllability of D-D systems, SIAM J. Contr. Opt., 35, 1997, 254-264. Zbl0872.93013MR1430293
  42. [42] J. Rotman: An Introduction to Homological Algebra, Academic Press, New-York, 1979. Zbl0441.18018MR538169
  43. [43] L.H. Rowen: Ring Theory, Academic Press, Boston, 1991. Zbl0743.16001MR1095047
  44. [44] J.P. Serre: Faisceaux algébriques cohérents, Annals of Math., 61, 1955, 197-278. Zbl0067.16201MR68874
  45. [45] E.D. Sontag: Linear systems over commutative rings: a survey, Richerche di Automatica, 7, 1976, 1-34. Zbl0522.93020
  46. [46] M.W. Spong, T.J. Tarn: On the spectral controllability of delay-differential equations, IEEE Trans. Automat. Contr., 26, 1981, 527-528. Zbl0474.93014MR613571
  47. [47] A.A. Suslin: Projective modules over a polynomial ring are free (in Russian), Dokl. Akad. Nauk. S.S.S.R., 229, 1976, 1063-1066; English translation: Soviet Math. Dokl., 17, 1160-1164. Zbl0354.13010MR469905
  48. [48] Y. Yamamoto: Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems, SIAM J. Contr. Opt., 27, 1989, 217-234. Zbl0671.93003MR980231
  49. [49] D.C. Youla, G. Gnavi: Notes on n-dimensional system theory, IEEE Trans. Circuits Syst., 26, 1979, 105-111. Zbl0394.93004MR521657
  50. [50] D.C. Youla, P.F. Pickel: The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Trans. Circuits Syst., 31, 1984, 513-518. Zbl0553.13003MR747050

Citations in EuDML Documents

top
  1. H. Mounier, J. Rudolph, M. Fliess, P. Rouchon, Tracking control of a vibrating string with an interior mass viewed as delay system
  2. Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira–Ramírez, Correcteurs proportionnels-intégraux généralisés
  3. Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira-Ramírez, Correcteurs proportionnels-intégraux généralisés
  4. Luis Alejandro Márquez-Martínez, Claude H. Moog, Martín Velasco-Villa, Observability and observers for nonlinear systems with time delays
  5. Frédéric Rotella, Francisco Javier Carillo, Mounir Ayadi, Polynomial controller design based on flatness
  6. Ülle Kotta, Palle Kotta, Miroslav Halás, Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra
  7. Frank Woittennek, Joachim Rudolph, Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays
  8. Frank Woittennek, Joachim Rudolph, Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays
  9. Michel Fliess, On the structure of linear recurrent error-control codes
  10. Michel Fliess, On the structure of linear recurrent error-control codes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.