A second-order finite volume element method on quadrilateral meshes for elliptic equations
- Volume: 40, Issue: 6, page 1053-1067
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topYang, Min. "A second-order finite volume element method on quadrilateral meshes for elliptic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 40.6 (2006): 1053-1067. <http://eudml.org/doc/245235>.
@article{Yang2006,
abstract = {In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in $H^1$-norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.},
author = {Yang, Min},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume element; second-order; quadrilateral meshes; error estimates; mixed finite element finite volume method; elliptic problem; convergence; a priori error estimates},
language = {eng},
number = {6},
pages = {1053-1067},
publisher = {EDP-Sciences},
title = {A second-order finite volume element method on quadrilateral meshes for elliptic equations},
url = {http://eudml.org/doc/245235},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Yang, Min
TI - A second-order finite volume element method on quadrilateral meshes for elliptic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2006
PB - EDP-Sciences
VL - 40
IS - 6
SP - 1053
EP - 1067
AB - In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in $H^1$-norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.
LA - eng
KW - finite volume element; second-order; quadrilateral meshes; error estimates; mixed finite element finite volume method; elliptic problem; convergence; a priori error estimates
UR - http://eudml.org/doc/245235
ER -
References
top- [1] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. Zbl0634.65105
- [2] B. Bialecki, M. Ganesh and K. Mustapha, A Petrov-Galerkin method with quadrature for elliptic boundary value problems. IMA J. Numer. Anal. 24 (2004) 157–177. Zbl1057.65080
- [3] Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713–735. Zbl0731.65093
- [4] Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392–402. Zbl0729.65086
- [5] S.H. Chou and S. He, On the regularity and uniformness conditions on quadrilateral grids. Comput. Methods Appl. Mech. Engrg., 191 (2002) 5149–5158. Zbl1030.65124
- [6] S.H. Chou, D.Y. Kwak and K.Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. Math. Comp. 72 (2002) 525–539. Zbl1015.65068
- [7] S.H. Chou, D.Y. Kwak and Q. Li, error estimates and superconvergence for covolume or finite volume element methods. Num. Meth. P. D. E. 19 (2003) 463–486. Zbl1029.65123
- [8] P.G. Ciarlett, The finite element methods for elliptic problems. North-Holland, Amsterdam, New York, Oxford (1980). Zbl0511.65078
- [9] R.E. Ewing, R. Lazarov and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media. Num. Meth. P. D. E. 16 (2000) 285–311. Zbl0961.76050
- [10] R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2001) 1865–1888. Zbl1036.65084
- [11] W. Hackbusch, On first and second order box schemes. Computing 41 (1989) 277–296. Zbl0649.65052
- [12] R.E. Lynch, J.R. Rice and D.H. Thomas, Direct solution of partitial difference equations by tensor product methods. Numer. Math. 6 (1964) 185–199. Zbl0126.12703
- [13] Y. Li and R. Li, Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17 (1999) 653–672. Zbl0946.65098
- [14] R. Li, Z. Chen and W. Wu, Generalized difference methods for differential equations, Numerical analysis of finite volume methods. Marcel Dekker, New York (2000). Zbl0940.65125MR1731376
- [15] F. Liebau, The finite volume element method with quadratic basis functions. Computing 57 (1996) 281–299. Zbl0866.65074
- [16] I.D. Mishev, Finite volume element methods for non-definite problems. Numer. Math. 83 (1999) 161–175. Zbl0938.65131
- [17] E. Süli, Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419–1430. Zbl0802.65104
- [18] E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59 (1992) 359–382. Zbl0767.65072
- [19] M. Tian and Z. Chen, Generalized difference methods for second order elliptic partial differential equations. Numer. Math. J. Chinese Universities 13 (1991) 99–113. Zbl0734.65083
- [20] Z.J. Wang, Spectral (finite) volume methods for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178 (2002) 210–251. Zbl0997.65115
- [21] Z.J. Wang, L. Zhang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. IV: Extension to two-dimensional systems. J. Comput. Phys. 194 (2004) 716–741. Zbl1039.65072
- [22] X. Xiang, Generalized difference methods for second order elliptic equations. Numer. Math. J. Chinese Universities 2 (1983) 114–126. Zbl0572.65079
- [23] M. Yang and Y. Yuan, A multistep finite volume element scheme along characteristics for nonlinear convection diffusion problems. Math. Numer. Sinica 24 (2004) 487–500.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.