# Vertical compaction in a faulted sedimentary basin

• Volume: 37, Issue: 2, page 373-388
• ISSN: 0764-583X

top

## Abstract

top
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren’s method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.

## How to cite

top

Gagneux, Gérard, et al. "Vertical compaction in a faulted sedimentary basin." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 373-388. <http://eudml.org/doc/245243>.

@article{Gagneux2003,
abstract = {In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren’s method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.},
author = {Gagneux, Gérard, Masson, Roland, Plouvier-Debaigt, Anne, Vallet, Guy, Wolf, Sylvie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {porous media; vertical compaction; sedimentary basins; fault lines modelling; fracturation; conservation laws; Darcy law; Kozeny-Carman tensor; time discretization; existence; uniqueness; Schauder-Tikhonov fixed-point theorem; Holmgren's method},
language = {eng},
number = {2},
pages = {373-388},
publisher = {EDP-Sciences},
title = {Vertical compaction in a faulted sedimentary basin},
url = {http://eudml.org/doc/245243},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Gagneux, Gérard
AU - Masson, Roland
AU - Plouvier-Debaigt, Anne
AU - Vallet, Guy
AU - Wolf, Sylvie
TI - Vertical compaction in a faulted sedimentary basin
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 373
EP - 388
AB - In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren’s method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.
LA - eng
KW - porous media; vertical compaction; sedimentary basins; fault lines modelling; fracturation; conservation laws; Darcy law; Kozeny-Carman tensor; time discretization; existence; uniqueness; Schauder-Tikhonov fixed-point theorem; Holmgren's method
UR - http://eudml.org/doc/245243
ER -

## References

top
1. [1] S.N. Antontsev and A.V. Domansky, Uniqueness generalizated solutions of degenerate problem in two-phase filtration. Numerical methods mechanics in continuum medium. Collection Sciences Research, Sbornik, t. 15, No. 6 (1984) 15–28 (in Russian). Zbl0585.76143
2. [2] L. Badea, Adaptive mesh finite element method for the sedimentary basin problem. In honour of Academician Nicolae Dan Cristescu on his 70th birthday, Rev. Roumaine Math. Pures Appl. 45 (2000), No. 2 (2001) 171–181. Zbl1020.76031
3. [3] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles partielles du premier ordre à coefficients réels. Ann. Sci. École Norm. Sup. 3 (1970) 185–233. Zbl0202.36903
4. [4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-holland, Amsterdam (1978). Zbl0404.35001MR503330
5. [5] P.A. Bourque, http://www.ggl.ulaval.ca/personnel/bourque/intro.pt/science.terre.html.
6. [6] H. Brezis, Analyse fonctionnelle - Théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
7. [7] P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis. Vol. II, Finite Element Methods (Part 1). North Holland (1991). Zbl0712.65091MR1115235
8. [8] A.C. Fowler and X. Yang, Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59 (1999) 365–385. Zbl0923.35124
9. [9] G. Gagneux, Sur l’analyse de modèles de la filtration diphasique en milieu poreux, in Équations aux dérivées partielles et applications : Articles dédiés à J.L. Lions. Gauthier-Villars, Elsevier (1998) 527–540. Zbl0914.35067
10. [10] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Mathématiques & Applications No. 22. Springer-Verlag (1996). Zbl0842.35126
11. [11] G. Gagneux, A. Plouvier-Debaigt and G. Vallet, Modélisation et analyse mathématique d’un écoulement 2D monophasique dans un bassin sédimentaire faillé sous l’effet de la compaction verticale, Publication Interne du Laboratoire de Mathématiques Appliquées CNRS-ERS 2055, No. 2000-31 (2000).
12. [12] D. Gilbart and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). Zbl0361.35003MR473443
13. [13] G. Gödert and K. Hutter, Induced anisotropy in large ice shields: theory and its homogenization. Contin. Mech. Thermodyn. 10 (1998) 293–318. Zbl0934.74018
14. [14] A.T. Ismail-Zade, A.I. Korotkii, B.M. Naimark and I.A. Tsepelev, Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins. Comput. Math. Math. Phys. 38 (1998) 1138–1151. Zbl0960.86001
15. [15] E. Ledoux, http://www.emse.fr/environnement/fiches/1_2_2.html.
16. [16] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
17. [17] X. Luo, G. Vasseur, A. Pouya, V. Lamoureux-Var and A. Poliakov, Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale. Marine and Petroleum Geology 15 (1998) 145–162.
18. [18] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. 17 (1963) 189–206. Zbl0127.31904
19. [19] J. Nečas, Écoulements de fluide, Compacité par entropie, Collection Recherche et Mathématiques Appliquées, No. 10. Masson (1989). Zbl0717.76002MR1269784
20. [20] H. Obelembia Adande, Contribution à l’étude de l’unicité pour des systèmes d’équations de conservation. Cas des écoulements diphasiques incompressibles en milieu poreux, Thèse de l’Université de Pau (1996).
21. [21] O.A. Oleĭnik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk 14 (1959) 165–170. Zbl0132.33303
22. [22] L. Perez, Modélisation de la compaction dans les bassins sédimentaires : Influence d’un comportement mécanique tensoriel, Thèse de l’ENSAM (1998).
23. [23] F. Schneider and S. Wolf, Quantitative HC potential evaluation using 3D basin modelling application to Franklin structure, central Graben, North Sea. UK Marine and Petroleum Geology 17 (2000) 841–856.
24. [24] F. Schneider, S. Wolf, I. Faille and D. Pot, A 3D basin model for hydrocarbon potential evaluation: Application to Congo offshore. Oil and Gas Science and Technology 55 (2000) 3–12.
25. [25] G. Sciarra, F. Dell’Isola and K. Hutter, A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13 (2001) 287–306. Zbl1134.74365
26. [26] M. Wangen, Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21 (1997) 91–120. Zbl0904.76087
27. [27] M. Wangen, B. Antonsen, B. Fossum and L.K. Alm, A model for compaction of sedimentary basins. Appl. Math. Modelling 14 (1990) 506–517. Zbl0709.76140
28. [28] Z. Wu and J. Yin, Some properties of functions in $B{V}_{x}$ and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395–422. Zbl0726.35071
29. [29] E. Zakarian and R. Glowinski, Domain decomposition methods applied to sedimentary basin modeling. Math. Comput. Modelling 30 (1999) 153–178. Zbl1042.65543

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.